
NASA-TM-87521 19860003889 

A Reproduced Copy 
OF 

U~\\~\\~ t{W~ 
-( . 6 \980 

1'r:'·t 
t.RCH ce.N, -' 

v,tlGLE.'( RESE NASA 
U6R~R't~,. p;no:1 

Reproduced for N~~~~\'\RI.l\i'1.\:\ 

by the 

NASA Scientific and Technical Information Facility 

FFNo 672 Aug 65 



3 1176 01306 5389 

, 
I , 
I 

~, , 
, 
, 
, 
, 
, 
, 
, 
, 
I 
, 
, 

r 
~ , 

, 
, 
, 
, 
I , 
, 
, 
, , 

, 1 , , 

, I , , 
, I , , 
, 1 

~ I 
, I 

I ,1 
'I 

~ 



j 
, , 

! 

I 

-

I 
1 
~ , 

I 

".", . , 

PRELl 

Nat/ona} Aeronautics and 
Space' Administration 

Lyndon B, Johnson Space Center 
Houston. Texas 

.- . 

,,' 
, , 

,'C 

''} (> 

, 
\ 

TIO 

. 
,,' • 

' ' 

,,' '" 

JSC'16555 

o 

I'NARY DESIGN REPORT 

" 

... 
.... -
IZ 
fiJI 
Men 
;IIo>fg 
-11;0 

n 
tt­

IV 
\.lien 
IVIoi 

/Ilo " 
't1"" 

H 
:xC) 
n!lr. 
c-ro 
-ro 
I\J~ 't'" tl'il"t 

n"llf.:!K 
til H 
(')I'>CI2! 
~OP 

-fT.l 
tv ...., 
tv 
tJ:I 

., 

STRUCTURES DIVISION 

ENGINEERiNG AND DEVELOPMENT 
, DIRECTORATE 

SEPTEMBER 1982 

.. 

... 

/ ,. 



.. 

. .. ". .' .. . , . 

f'OR\-IAHD 

This r~,)ort contains tbe results of the 1-,cl1li11u~rl cl~siCJn and 
• ",;.:-. ,~.' 0; 

an<::al:tsis that was lJerforr.H.:d by tilt. Structures Divi~ioll'::; 

Preliininary spa'ce Station Design 'l'eam, durinlJ the 3-hlonth iJtL'iod 

between June 14 and September 15, 1982. 'I'his li;.cll.l wa::; orgauized 

1n the following way 

Team Of fector: 

Thermal Analysis: 

On-orbi t Drnafllics 
Analysis: 

Structural Design and AnalYGis 
De~loyable Truss: 

flolddown Attacbm~lIts: ... .. ~ .. ." ......... " .. --. 
Module Design: 

&uildup S~yuencc: 

Materials: 

Repott PrelJaration: 

Special Editor: 

Outside S~uce Stotion 
Consultants: 

. .. . ~~ . ", .. 

Dr. William C. Sclluieider 

Richard Purish 
Robert Vogt 

John Sc:hlietiing 
Reg Hcrku 
Barbara IIcrnandez 
Hon riaynil rd 

HerbBrt Kavanaugh 
Dr. Frederick StebLin~ 

Clarenc~ Wcs::>elski 

Dr. 1<0 r tlu 1 N<.H:n· . .. ' 

Herbert KavanCluyil 
J in 1'lcHuhon 
Peter TUilor 

P. Dona 1 J Sf.1i tt. 
Clarence W~~scl&ki 

Sam Glorioso 

Patricic tccyacre 

Robert Hied 
Robert Wren 

...... 

t 

1 
i 

. , 
• 



-
. " 

TABLE OF CONTENTS 

Section Page 

Summar~ •••••••••••••••• ~ ••••••••••••••••••••••••••••• ~ ••• 1 .. 

'0 Introduction •••••••••• ~ ~' •• ~. ~ ~~ ••••••.•• ~ ••••.••• •.•.••.•••• 

0.1 Back9round ••• ~ •••••••••••••••••••••••••••••••••••••••• ••• 

0.2 General Pldrl ••••••••••••••••••••••••••••••••••••••••••••• 4 

~volution to the Final Configuration ••••••••••••••••••••• 6 

0.4 Uescription of Triangular S~ace Station Configuration •••• 11 .. 
0.5 Configuration •••••••••••••••••••••••••••••••••••••••••••• 13 • 

1.0 space Station Thermal Analysis ••••••••.•••••••••••••••••• 16 

1.1< 'Thermal Design Objectives •••• ~::.' •••••• ~' ••••••••••• ~ ••• ~... 16 

1.2 Thermal Analysis......................................... 17 

1.2.1 Thermal Radiation Geometric Math Model •••••••••• 17 

1.2.2 Thermal Conduction Math Model ••••••••••••••••••• 19 

1.2.3 Analytical Results •••••••••••••••••••••• ~ ••••••• 24 

1.2.4 Conclusions ••••••••••••••••••••••••••••••••••••• 35 

1.3 Radiator Concepts •••••••••••••••••••••••••••••••••••••••• 40 

.. ... 
" . , , '1'.4 I 

I , 
1.4.1 Structurally Enclosed Modules ••••••••••••••••••• 40 t ~ • 

• l,;" 

1.4.2 Thermal Comparison with H3se1ine •••••••••••••••• 41 

2.0 ,Space St<ltion On-orbit D~namic Analysis •••••••••••••••••• 48 

2.1 Objectives ••••••••••••••••••••••••••••••••••••••••••••••• 48 

2.2 Introduction •••••••••••••••••••••••••••••••••• ~ •••••••••• ' 

ii I 

.t¢). 



-.. 

...... 

. . 

TABLE OF CONTENTS (CONT'D) 

Section 

2.3 

2.4 

2.5 

3.0 

l.l 

Orbital Altitude Analysis •••••••••••••••••••••••••••••••• 50 

"Atmosphere 
" , , !: .,.' ~ _ ~ r ," : f ~ _ ( " 

Model •••••••• ~ ••• '.-•• : •••••••••••••••• 
<' 

51 

2.3.2 STS Payload Performance ••••••••••••••••••••••••• 51 

2.3.3 OrLit Decay Time •••••••••••••••••••••••••••••••• 52 

Orbit Maintenance Methodology ••••••••••••••••••• 54 

Attitude Control Analysis •••••••••••••••••••••••••••••••• 5G 

2.4.1 Disturbance Torques ••••••••••••••••••••••••••••• 57 

2.4.1.1 A~rodynamic Torque •••••••••••••••••••••••••••••• sa 

2.4.1.2 Gravity Gradient Torque ••••••••••••••••••••••••• 61 

2.4.2 Attitude Control Assessment ••••••••••••••••••••• 62 

Conclusions •••••••••••••••••••••••••••••••••••••••••••••• 75 

Structural Desiqn and Analysis 

Deployable Truss ••••••••••••••••••••••••••••••••••••••••• 79 

79 3.1.1 Introduction •••••••••••••••••••••••••••••••••••• 

3.1.2 Truss Requirements •••••••••••••••••••••••••••••• 79 

3 .. 1 .• 3· ... ' Truss 'Cnncel't: .s tudy .• ·• ' ... :. ; ......................... '. '.' a 0 

3.1.4 Truss Loading ••••••••••••••••••••••••••••••••••• as 

3.1.5 Truss Materials Study ••••••••••••••••••••••••••• 90 

3.1.6 Space Station Frame Geomutry •••••••••••••••••••• 94 

3.1.7 Trusa Memb~r Sizing and Wciyht Analysis ••••••••• 95 

3.1.8 payload Packaging Analysis •••••••••••••••••••••• 102 

3.1.9 Oeployable Joint and Fitting ~tudy •••••••••••••• 109 

3.1.10 Space Deployment Concept •••••••••••••••••••••••• 115 

3.1.11 Conclusions and Recommendations •••••••••••••••• ~ 120 

3.1.12 References ••••••••••••••.••.•••••••••••••••••••• 124 

iii 

T 
j 

, . 
" , &, •• 

, . 



.. 

. . 
., 

TABLE OF CONTENTS (COlJT'D) 

Section page 

Handling Equipment •••••••••••••••••••••••••••••••••••••• 125 

3.2.1 Requirements •••••••••••••••••••••••••••••••••••••••••••• 126 

j.2.2 trie Manip~l~tor concept ••••••••• ~ •••••••••••••••••••••• ~ 127 

3.2.3 

3.2.4 

3.2.5 

Loads and Stresses ••••••••••••••••••••••••••• ~ •••••••••• 132 

Operational Stresses ••••••••••••••••••••••••• 135 

Stlffnesse~ •••••••••••••••••••••••••••••••••• 141 

MaKimum Velocities ••••••••••••••••••••••••••• 153 

'retratruss ~lember Loads and Stresses ••••••••• 154 
.", 

Manipulator Operations •••••••••••••••••••••••••••••••••• 158 

3.2.4.1 OTV Handling................................. ISS 

3.2.4.2 Moving Base of Manned Manipulators........... 158 

3 .. 2.4.3 Inside and Outside Conversion................ 160 

3.2.4.4 Shuttle Docl:ing.............................. .160 

Stowage of the Manipulators............................. 166 

Conclusions ••••••••••••••••••••••••••••••••••••••••••••• 168 

:3.3···· '}fdrd'down i\tt4!ch.rni!n·t·s; .. ;; ... · ••• ;.~~;~· ••••••••••• ~.; ...... : .. ·· i70 

3.3.1 Introduction •••••••••••••••••••••••••••••••••••••••••••• 170 

3.3.2 Attachment Interfaces ••••••••••••••••••••••••••••••• : ••• 172 

3.3.2.1 Attachment at Truss Nodal Points ••••••••••••• 172 

Attachment at Truss Diagonals •••••••••••••••• 172 

3.3.3 Orbiter Transfer Vehicle (OTV) Holddown Attachments ••••• 174 

3.3.3.1 OTV Trunnion Attach with Tripod •••••••••••••• 176 

3.3.3.2 Handling FiKture Attach •••••••••••••••••••••• 179 

3.3.3.3 OTV Berthing Fixture Attach •••••••••••••••••• 182 

iv 

.,. . 
j. 

I 
• r 
~ 

t .. .. 
,:;1 

t , 
" 



Secticn 

3.3.4 

3.3.5 

3.3.6 

3.4 

3.4.). 

3.4.2 

3.4.3 

. . . . .. . . . 
3.4.5 

3.4.6 

. TABLE OF CONTENT (CONT'D) 

Orbiter Berthing to Station ••••••••••••••••••••••••••••• 183 

3.3.4.i Orbiter Berthing with Baseline Docking 
Tunnel •••••••••••••••••••••••••••••••••••••• ·184 

3.3.4.2 Alternate Orbiter Uerthing Conccpts •••••••••• 187 

Attachment of Auxil1iary Equivment to Station ••••••••••• 189 

3.3.~.1 Storagc Tank Attachment •••••••••••••••••••••• 189 

3.3.5.2 Tubiny and Cable Tra), Attachment ••••••••••••• 192 

Attachment of Satellites to Station ••••••••••••••••••••• 193 

Module uesi9n ••••••••••••••••••••••••••••••••••• ~ •• ~; •••. 195 

Introduction •••••••••••••••••••••••••••••••••••••••••••• 19~ 

Module Design Re4uirements ••••••••••••••••••••••••••••• 195 

Module Configuration •••••••••••••••••••••••••••••••••••• 202 

3.4.3.1 ModUl.e 'Skin Thickness~ ••••••••••••••••••••••• 202 

3.4.3.2 End Closure Design ••••••••••••••••••••••••••• 206 

3.4.3.3 Weld Joint Design •••••••••••••••••••••••••••• 209 

3.4.3.4 
... . ' 

Mct~~~oid Protection •••••••••••••••••••••••••••••••••••• 

Support.ing Analysis ••••••••••••••••••••• a a ..... ·.210 
• • • ... • .. " .. ~... .. ".. .."....". of ... • " • • • .. ... .. 

214 

Module Weight ••••••••••••••••••••••••••••••••••••••••••• 21S 

Manufacturing Summary ••••••••••••••••••••••••••••••••••• 218 

3.4.6.1 Materials Selection •••••••••••••••••••••••••• 218 

3.4.6.2 Fabrication Consideratlons ••••••••••••••• ~ ••• 219 

3.4.6.3 Cassinian, Elliptic, and Spherical Do~c 
~'abr i ca t i on .................................. . nu 

3.4.6.4 Conic and Flat BUlkhecd Dome Fabrication ••••• 222 

3.4.6.5 fabrication Cost Comparison •••••••••••••••••• 227. 

3.4.6.6 Fabrication Summary and Hccommcndatiofls •••••• 224 

v 

1 i 

1 
i 

: . 

~ l i.. 



TABLE OF CONTENTS (CONT'D) 
Section Page 

3.4.7 Tunnels •••••••••••••••••••••• ~ •••••••••••••••••••••••••• 225 

3.4iO -Conclusions ~nd Recommendaiions~~ •••• ;~ ••• ~.~ ••• ; ••• : ••• 229-
o " 

3.4.9 keferences ••••••••••••••••••• ~ •••••••••••••••••••••••• •• 231 

4.0 Buildup Sequence •••••••••••••••••••••••••••••••••••••••• 232 

Delivery Flight Number 1 ••••••.••••••••••••••••••••••••• 232 

Delivery Flight Number 2 •••••••••••••••••••••••••••••••• 233 
• 

Delivery ~'light Number 3 •••••• •. _ •••••••••••••••••••••••• 236 

Delivery Flight Number 4 •••••••••••••••••••••••••••••••• 2~6 J 

Delivery Flight Numbers 5, 6, 7, and 8 •••••••• : •••••••••• 240 

• 5.0 Concluding RemarKs ••••••••••••••••••••••••••••••••••••••• 244 

.. " . " .... .. " : . . .... ....... " • " ....... " .. t ............ .' . 
J . 
• 1-.0-

• 

vi 



, " 

0"' 

, " 

':' , 

SUMl-1ARY 

This report summarizes a 3-month engineering effort by 

Str~ctures Di'~ision' peros~nnel to define a structur~l-ly efflclent":ancl 

stable Sh~ttle launched S(Jace Stat~on. Potential uses for tis(;: Space 

Station were established to be 

a) Servicing and construction of orbital transfer vellicles 

(OTV) for launch to geosyncronous orbit 

b) Satellite servicing ancl repair 

c) Laboratory industrial manufacturing and experiments 
,- r, 

d) Large antenna technology (buildup and servicing) 

e) Ea rt!l observation 

f) Communications 

g) Space observation 

Based on a detailed study of these potential uses, efficient and 

maximum operation dictates that the Space Station, regardless of 

,",' c'ohf'i'g'u'rat°i'ono,'m'u'sfo'have 'a' Iarqe,' flati'stiff structure ,to serV!2,as a 

work base to which the OTV, satellites, etc. are attached during 

their construrition and/or servicing. Furthermore, this platform to 

be lightweight, should be a trussed structural clement, and to 

minimize Egtravehicular Activity (EVA), should also be de~loyablu. 

Thus, it was concluded that one critical element of any Space Station 

should be a planar truss that can be constructed on the ground, 

packaged for transportation in the Shuttle, and deployed in space. 

-",., 
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Another element that is considered critical to a fUnctional and 

cost effective Space Station, is the Universal Module. Universal 

Modules are structural ,shells with the samcdesign and construction 
~- , 

regardless of their function (habitat, lab, etc). These modules can 

be used for various purposes by tailoring the intern~l ~~ranyement 

(e4ui~ment, partition~, etc) to meet the specific function. 

To minimize the changes in gravity yradient torques and the 

overall dynamic characteristics that can occur when the large masses 

(associated with OTV, satellites etc) are attached, removed, and 

moved around on the S~ace Station, transient masses should be placed 

as near the SI-lce Statil,n center of mass as possible. 

The demands of antennas and solar cells for acculate positioniny 

and the requirements of adequate stiffness to avoid undesirable 

structural distortions are considered serious and thereby will 

dictate the design~ Therefore, one further characteristic essential 
.' . 

components when they form the full operational Space Station. 

The S~ace Station configuration that bas these essential 

features consists of three large erectable trusses, six modules, and 

three tunnel systems (see figure O.V).- In two Shuttle flIghts a 

habitable but limited operational station can be delivered to orbit. 

For a fully operational Space Station eight flights are required. 

2 
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" 

Sufficient. engineering was performed to dcmon:;trate tht: !t:aBi-

bility of this Space Station configuration, and insure that no major 

design problems would exist. The configuration presented in this 

study is such that it can be further expar,ded (as uesiled) to a much 

lar9cr Space Station (see figure O.VI) by adding mor~ tcus&es and 

modules, and the resul ting configuration would tJossess tlle same 

general characteristics as the original. 

G , 
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o INTRODUCTION 

0.1 Background 

~ ~ . 

':", c, Wi ththe present "rcali tyo£ an "ope"rationtlf 'Space Shuttle', 

Ult~ energy of the, ~~rospace communi ty can now be focused on the 

~stablishment of a permanent Space Station. During the past 20 

~~~r~ numerous studies have been pRrformed that resulted in variuus 

: .• I.lce laboratories, bases, and stations utilizing different launch 

.... ·.'ldc1es. Recently, preliminary studies (e.g., Rockwell and Hoclnr~) 

have been completed using the space shuttle. These studies (and tIlt: 

resulting'configurations), while of great value, leave much to ~e 

d~sired relative to structural design and providing inherent 

ca~abilities to meet long tero Space Station needs such as spac~ 

~d~ing an OTV, satellite servicing and space construction. 

To arrive at a Space Station design th~t provided the 

needed capabilities and which was strongly influenced by structural 

" ',' c:I,l~ ,~~~~,::a~; C;:~l!s~?~r~~~~."~, a,nd, ,t?, mor,e ,~~eply involve ,key, pc rspc~r}G] 

in the Space Station design effort (previously (lccupied \'lith Shuttl.: 

design certification and analysis) a Preliminary S~ace Station 

Design Team was formed. This team is composed of eiyht full-tim8 

and six part";'time engineers "iith expertise in the arca~ of 

preliminary structural des~gn, rigid body d~nam!cs and control, 

thermal analysis, and materials. The time allocated to this initial 

design effort was the 3-month period between June 14 through 

Sc~tember 15, 1982. 
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0.2 General Plan 

! 
f 

~he general design and analysis plan followed by the team 

is shown in figure.O.I. 
,-. ("- ';- " ;~. 

, . ~ c 
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GENERAL PLAN 

SPACE STATION 

PRELIMINARY DESIGN TEAH 

r" 

sruOY PAST WORK 
0 FUNCTIONAL OBJECTIVES OF SPACE STATION 
0 ELEf-iENTS REQUIRED BY HAJORITY OF STUDU.S 

, , 

0 STRUCruML COi-lFIllUMTIOti SruOlb W THE PAST 
(ASSOCIATED PROBLEJ1S) 

I 
fr 

CONFIGURATION DEFINITION 
0 f,EW STRUCTURAL ELEl·1ElnS 
0 END ATIACm·IENTS 
0 SPACE CONSTRUCTION 
0 ORBITER STORAGE DURING LAUNCH 

UOTE: CARRY ONE COUCEPT FURTHER 

~ 

DETAIlEl) ENGmEERWG 
0 THERf,tAL rumLYSIS 
0 Oi'l-ORBIT DYNf",'iIC AilALYSIS 
(I 

r 

.. .. #- s" . s •• _ •• • STRUCTUMl. OES IGN ANAL YS IS . ... ..' .. , . ~ .... . .' 
I 

." 
~I 

4. REPORT RESULTS 
0 FO!U1AL REPORT 
0 WOOD I~OOEL? 
0 SKETCHE$ 

• CONFIGUPJ\TION 
c" 

0 CONSTRUCTION 

· ORBITER STORAGE TECHtHQUES 

· END ATIACHl-1ENTS 
(I PRESENTATION . . 

. -

TO BE CONTINUED 

FIGURE O. I 
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0.3 Evolution to ~ Final Configuration 

After completing the first block of the general plan (post 

work studied) various concepts were proposed by the team. Three of 
- ' 

" f'" 

the initial configurations entertained were 

1. Tht1 Erectable Rigid Spheres 

2. The Building Block 

3. Thp. Erectable Hcxgon<ll Banger 

A Sketch of eoleh is sholrm in figures 0.11, O.III, O.IV. 

Each configuration had a n~mber of advantageous features. 
C I'. ... ,j c 

For example, the Erectable Rigid Spheres conf'lguration eliminated' 

the need (or nolar cell orientation, utilized gravity gradient 

stabilization and was composed essentially of erectable structure. 

The Building Block offered,a very compact side by side modul~ 

configuration which minimized the cable and tubing l~ngths, utlliz~d 

minimum length solar arrays (i.e., no flexible beams) and provided 

for ~h~rtsleeve servicin~ of the solar array drives. The Erectable 

He'x'agona '1 "'H~rige'~' co~f rgLI~at'i on' uti 1 iied' 's'o'i.a'r c'e liS r fgitlUy' " . , .. ', ' 

attached to the trusses and provided for internal center of gravity 

location which contributes to greater overall control and good 

center of gravity management. 

The Erectable lIex3<)onal Han.Jer seeJi\E!d to bave the bt:!>t 

potential for mectiny lhe general Space Station objectives. The six 

sided structure, uS initially envisioned, woulc have a tendency to 

distort cross-sectionally unless the corners were made extremely 

stiff Clnd conscc!ucntly heavy. To minimize this tendency, the 
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:r' 

r 

! 
f. 

~ 
II 

I 
f , 
f .. 

I 
t 
t 
I 
I 
i 

r 
I 

I 

i 
'\ , 
I 
t 

I 
' ... """ ......... ..,....l. ... ~ 

~" 

\ . 



/ 

. 
; .. 

. . . ~ . .. . ,. 

decision was made to use Q 3-sided, inherently stable, cross section 

for the configuration. This triangular configuration, after some 

slight modifications, was chosen for the detailed engineering 

analysis (square 3 of general plan) • 
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0.4 DeHcription of Triangular Space Station Configuration 

The baseline configuration for the design analysis is 

c~~prised of six mudules and thiec' de~loy~ble te~ratru~s flat 

platform's assembled. in such a way that an open trianyular shaped 

structure (see figure D.V) is formed. Each of the three apexes has 

two modules (figure O.V, item 1) and each of the three flat sides are 

tlw.tetratrllss platforms. 'l'entatively there arc two habitat modules, 

two servict." moo\llen, a logistic module and a lab module. Bach module 

i5 aproximntely 14 feet dinmeter and 46 fcnt long. E;')cll platform is 

apiiroximutc'ly 125 feet 101lg, 70 feet: wide,' and 0.4' f~et thick. 1'hree 

connectin\] tunnels (figure O.V, item 3) run between aiJexes and join 

the modules 50 that all Nodules ate accessible to one another. These 

tunnels ure pressurized, and about 6 feet in diameter, and have d 

telescoping teaturc that iJermits then to be stowed irl the midfuselagc 

bay. Item 4 o[ figure D.V is the solar panol that is fastened to the 

outside of one of the tetratruss platforms, sized to suplJly 50 .... w of 

·'Cleccr·i.ca1· powe·r .•.. Item ·5' uf.fig.ure.O.Y. i:.; one oJ: the two rad.i~l:or 

panels (mounted to the outside surface of the remaining two 

platforms) that radiates exc~ss heat to sp~ce. Item 6 of figu:e o.v 
is a manipulator system to move and \-Jork with payloads such as, 

DTV'S, satellites, tanks, etc. The entire assembly is about 90 feet 

long and the distance between apexes is 138 feet. 
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0.5 Configuration 

'fhis configuration affords the follo~/in9advantages 

The. three structuraltruss,es (forming the largest Space 

Station component) are fabricated on the ground, collapsed, launched 

in the Shuttle, and erected in space. The structural trusses are 

designed to require minimum EVA during construction. 

The configuration.buildup sequence can be tailored to the 

Space Station funding schedule. The first three flights comprise a 

Space Station (trusses; habitat module, and a service module). 

Additional nodules and handling equipment will be brought up on later 

flights as funding becomes available. 

The solar cells, used for electricity generatIon, are 

attached to one of the stiff truss sides and therefore eliminates -the 

problems associated ~lith very flexible solar panels. 

.. . .. "" .. • '. +- "4 •• 
" ." " .. to ~ .... ... .o. . " .. , ,,"' ..... .. " ." ... 

The center of mass of the basic Station is located 

internal to the structure which allows for ease at control and 

center of gravity m~nagement d~ring OTV and satellite servicing_ 

The open truss construction of the sides offer excellent 

work areas for OTV and satellite servicing au well as lar<Jt) antenllC) 

construction. 

The modules are cylindrical unitG th3t fit nicely into the 

Orbiter payload bay ear delivery, and are designed such that the 
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structure is used to accommodate the launch loads as well as the 

loads induced through the trusses by dally operations. The 

configuration, wilile baselined as IncrtlDlly oriented, can be eaoily 
" (' c' " " , , ~,- ;: -c '. 

oriented to earth since very low gravity gradient torques are 
, . 

experienced. 

The thruster unl ts for Space Station or ientation aro thre.c 

in number and are located at the very stiff and strong corners of the 

truss triangles. This eliminates the need for additional weight 

required by thrus~loads. 
~ () \. . ~, . 

The basic Triangular Station configuration can casily be 

expanded by the addition of trusses and modules. This configuration, 

when expanded, resembles a honeycomb (figure O.V!). 

. . . ~.-' .' . . ...... ' " .. '." ". .'. ~ . ,., .. . ',' . 
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o 1.0 ~e:ce Station 'l'herm.;!.Analxsin 

1.1 The~l Design Ohjectives 
,.' 

The primary thermal desiC]n objnctives addressed in this stuny are: 

(l) Efficient spaO! station thermal energy management. 

(~) verification of acceptable temperature levels of structural 

components. 

(3) Mointf'!nance of habitat module wall temperature levels clUoVf.! the 

condensation point • 
.. . 

c ,_, _,~,) " 

""(4) '·1\ssessmP.nt of configuration r;ensitivlt.y to thp.rmal coating!3 and 

insulCltions. 

Efficient then"'ll energy manage~nt in " ~P.1CP station concp.pt should begin 

with a structure that rrnximizes passive thermal control. 'T11h i~ ac:col"lpl lshed by 

selection of appropriate coatir.gs and insulations with prop~rties tailored for lOfl'J 

duration attitudes in Earth's orhit • 

. ~ .. 

r· 

. .. 

configuration In order to assure a thermally efficient design. This involved a rough 

sizing of insulations ann specification of coating characteristics. It \-Ias "Iso 

necessary to confirm that the solar arrays wouln have an~unte ~ck-5i~e rudlatlon 

capahility to operate at as low a temperature as pos..c;ible, enh<lncing power generation 

efficiency. Truss structure temperature levels and posslhle ~radient ran~es ~crc tu 

be established to justify radiator placeMent clOd to predict therrol 5trcsse~ in the 

st;ructure. 

One of the primary goals of the thermal design is to maintain th~ habitable 

module inner pressure vessel wall at a temperature higher than the internal dcwpoir.t 
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temperature (I.e., greater than approximately SOOF) to prevent condensation on the 

rmdule walls. This \-Iould be accomplished by rerlucing strong circu.rnferential gradients 

,,In the wall. ,These, gradients are controlle(! by balancing the influence of the exterrel 
<, r-'" '- ~. (-. _+ '-- : /' ~ • : " (" '- t, ~ .~ I - ~ {'" E ( • V ~ ." ,>-

environment against the internal heat load. Designing for a controlled heat rej~ction .. 
capability through the walls of the modules enables wall surface temperatures to be 

maintained at desired levels while reducing the internal load imposed on an active 

thermal control system. 

Another objective of the thermal design involvee assessing the sensitivity 

of the configuration to thermal coatings, assuming various insulation effectivities. 

"Th~' th~rinal' coatings' det~rmine' th~ doountof heat flux that isabSor~d and rcje~ted 

on the surface of the structure while the insulation modulates this flux into and out 

of the internal compartments. The sensitivity would preferably be low due to 

degradation that will occur to the coatings. Additionally, an insensitive 

configuration \vould imply that less e}:otic coatings could initially 00 utilized, 

reducing build-up and refurblsh~ent costs. 

.. .. " . r;2' . Therma.1Anniysis· . '. ' .... ' .. .. ... '", • t ••• 

~lermal math models were conztructed to assist in the analysis of the 

proposed configuration and to enable assesSlnent of thermal control materials. The 

thermal radiation analysis system (TRASYS) was u5e~ to determine heat loads to the 

external surfaces of the vehicle and the systems il1lproved nunl'~rical diCferencing 

analyzer (SINDA) enabled temperatures to be computed from these flux levels. 

1.2.1 Thermal Radiation Geometric t-1ath Model 

To accurately assess the influence of the external thermal environment on 

,the, proposed configurations, a TRASYS geometric math model WilS develoi;cd. '\:; sho· .... n in 

figure 1.1, modules and tunnels are represented h)l closed cylirldrical sh.1~s while the 
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solar orray!~ nnd trusswork are represented by pInnae surt:aces .. Initicll TMS'IS analy!;is 

resulted in the calculation of form factors between surfaces, taking Into account 

multiple inter-reflections between the 'surface~, anc1 bet\vNtn the sUrftlCml and space. 

Using these form factors, sever?! cases ·tlp-re rlln a::;swning various s()lac 

wavelength absorptivities of surface coatin1s (o<s = 0.2, 0.3 ~nd 0.5). These a~sorp­

tlvities <'Ire to represent preferred, as well as degraded, coating properties. Tlab in':" 

frared errissivity was assumed to remain constant at a value t')f 0.9. Solen arrilY 

absorptivity and emissivity were set at 0.7 and 0.9, respectively. The result of this 

analysi::; was .'1 set of radiation conductors whicll are utilized in the SlNDA thermal 

network. 

An additional output of the TRASYS analysis is the incident and ob~or!~d 

heat flux on surface nodes. These are computed by inputin!) orhi t.-l1 al ti tude, inclina­

tion and vehicle orientation with resp::ct to th~ earth and sun. Too h~at rates arc the 

sum of albedo, planetary, and direct solar influences durin,) the dusignated orbit • 

. . . ' ....... " :-Aps(!)rbed heat .£lUKCS 'at -a· nl!r.lber of .r>o-int.s. t.hrougho\lt the orbit can be input. into the 

SINn'\ analysis for a transient analysis or an average absorbed flux can be inp.lt for d 

steady-state analysis. To represent this configuration study, the orl>ital altitude was 

taken to be 250 statute miles at an inclination of 28.50 • The vehicle attitude was 

\</lth the solar array surfac~ oriented to\vards the sun during thE: orbit (i.e., SOldl: 

inertial). 

1.2.2 Thermal Conduction r-l;)th Model 

While the TRl'SiS math model depicts the effect of the external cnvlrorlm.:nt 
./'"::.:, 

on the surface of the vehicle I the snIDA math model utilize::. tl.cse influences to 

predict temperatures at the surfaces and througr.out the structure. ~.j) cJ{ill:lplc of cJ 
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modulo and tunnel representation and nodalization is given In figure l.~. 

Thg modulo structure Is assumed to be an aluminum preS&Jre vessel. 0.06-1n_ 

thick. The walls of th~ pressure vessel are covered wIth an internal .t.ibrou~ butt-type 

insulation and an external multiple-layer insulation (MLI). The internal insulation 

a5sIJJOO!>TG-lSOOO type properties, given in referen:e I, although that particular 

material may not be sui table for habi table areas wi thout some form of coating. The 

nominal thIckness of the internal insulation is 1 inch. Multiple layer insulation was 

chosen for the ext~rr~l surface of the module because of its extremely low conductiv­

ity in a low pressure environment. The nominal MLI wa~ comprised of 81 layers of em-
c.: 

bos~.cd !'lngle-aluminized mylar with an uncompreszed thickness of approximately '0.5 in. 

rrol~rties of this insulation are given in reference 2. Standing off from the module 

pressure vessel wall at approximately 4 inches is an al~~inUM micro-mzteroid shield of 

0.04 inch thickness. 

The tunnels are rr.odelcd with an inner wa1l thickness of 0.03 inch and an 

outer shield thickness of 0.02 inch, both of which are al~~inum separated by 0.5 inch 

.. ~f MLI of i:h~ 'tYPe ·~·r~~io~si/~"nticned· •. The . i'nt~~nal . afro convc~ticin' coeific'ic·nt. for 

both the tunnels and m~)ules w~s co~puted to be ap?ro~in~tely 0.15 Btu/hr ft2oF. The 

module air temperature is held at 70~F, whil~ the tunnel air temperature is allowed to 

float. This a1lows a calculation of the minimum required internal heat load to maln-

taln a module at shirt slcevo conditions. The surplus heat load would ba rejected 

through the radiator loop. Tunnel air ter.1peratu"res are assumed to float to ds::;e~:; the 

impact of non-continuous environmental control in those volumes. 

Properties for the trusses were assurr~d to be ~in\ilar to those of al~in~~, 

so Clrc modeled as being of equivalent conductance of il sheet 0.0045 inch thick. This 
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MATH MODEL NODALIZATION 
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Is definitely an area where greater modeling accuracy is required, but is beyond the 

. scope of the present study. Truss attachments to the modules are adiabatic because of 

the proposed small area of attachment, so have only a radiative influence upon the 
( r, r 

modules and tunnels. 

The solar cells will be cooled by their Imckside radiation ability, so the 

backside emissivity is assumed to be 0.9 with the front sioe solar absorptivity ~f 

0.7. Thermal conductivity and capacitance is modeled as being an aluminum sheet of 0.1 

inch thickness. This Is also an area that requires more detailed lnodeling to accura­

tely depict the array and structure components. 

Internal heat load in the modules, generated by electronics, power 

conditioning equipment, and environmental control hardware will be reject~d to space 

via heat pipe radiators. Single-sleed radiators which raoiate fro~ only one eide 

rather than two, are cap-~bab1e of rejecting roughly 31 watts/ft2 while operating'at 

approximately f)OoF with ,1 13 watt/ft2 environmental heat load. This would imply that 

for a module heat load of approximately SO kw., as comruted in reference 3, a 
,," ." _ 6 '" " " ... '" ... " .. oJ ...... .. "" _" • .. .. '" • ~ • .. •• • • .·l • * " "" " .. 

radiative surface of approy.imately 2800 ft2 would be required. To mouel the affects of 

this heat load on the configuration, certain truss nodes, shown in figure 1.3, are 

held at GOOF. The nodes comprise a total of 10,800 ft 2 of radiator area for the six 

modules. This area would havo the capability of rejecting approxir.\.."Itdy 180 i<w of 

thermal energy. The purpose of oversizing the required radiator area is to aszess what 

the effects of radiative blockage to space and additional heat load would be on the 

solar array. 

Using the above mentioned mathematical modeling parameters, a steady-state 

analysis was run to deter~ine long duration temperature levels. Insulation effcctive-
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ness and coating characteristics were then varied pararr~trically to ascertain the con­

figuration sensitivity to degraded properties. 

J.2~3 Analytical Results 

'Tables 1.1 through 1.3 reiterate the assumptions rnade for the baseline 

triangular configuration. A steady-state thermal analysis, using these parameters with 

r surface solar absorptivity of 0.2 and an average orbital external heating rate, was 

carried out to establish a temperature distribution in the structure. Figure 1.4 ,shows 

a nodal breakdown of the configuration with surface temperatures indicated in the 

appropriate areas. As ~hown in the figure, the largest thermal gradient (of 

'approdmately lOIOF) , appe~rs on a 'sunlit module microrreterold' bl.ll'nper shield. "Howevet';' 

the shadowed module surface also egperiences a gradient due to the warming effects or 
the radiators and radiated heat from the solar array on the front of the module ver~us 

the large view to space on the backside. Gradients \'/ithin the truss structure arc 

relatively small (l000), with side to side gradients being sOIDe\1hat large[' 

(approximately 1500 ). Tunnel air temp~rature varies from -90F on a sunlit side to 

-380F on the shadowed side. 
. . .. ......... ..".. .. ... .. .... . ~ .. ... ... ....... . ..... ." .. ' 
The solar array temperature, as with the other temperatures in the steady-

state analysis, indicates the orbital average temperature. Silicon solar cells at the 

indicated temperatures of approximately 100°F (3aOe) should operate at nO efficiency 

of roughly BS~ of their sunlight conversion efficiency according to figure 1.5 from 

reference 4. However, due to the orbital va,iation of impressed h~ating rates, array 
- c 

temperatures would vary widely_ To assess wl~t these variations would be, a tran5ient 

analysis was carried out. Figure 1.6 illustrates the predicted tempcrnturc range of 

the solar cells. This indicates that peak temperatures vrould be approximately 150~f. 

At these high temperatures, conversion efficiency would be reduced by 27%. When 

compared to a configuration which docs not include the heat rejection capabilit:ie~ of 
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TABLE 1.1 ANALVTlCAL ASSUMPTIOilS 

SURFACE :EXTEmIAL IUTEiUt,\L ExTERNAL 

STRUCTURE PRO?ERTIES SKW SKUl INSULATION 

S .. 0.2 0.04 INCH 0.05 INCH ['ill - 81 LAVERS 

~lODULE 
:: 0.9 2219 AI 2219 AI . EHBOSSED S I NGLE- . 

4 :IucHEs OFF ALUI·\l:U ZED 11vU\R . 
InTER!~AL SimI 0.5 !rICH 

S .. 0.2 0.'02 INCH 0.03 INCH 
SAME As TmmEl 22"19 AI 2219 AI .. 0.9 

0.5 'INCH OFF ABOVE 

INTERNAL SKIN 

S II 6.2 0.0045 hlCH - -
TRUSS = 0.8 2219 Al 

-
SOLAR S '" 0.7 0.1 INCH - -ARRAY ::: 0.9 2219 AI 

RADIATORS 
S ::: 0.2 0.1 INCH 

2219 AI - -'" U.9 

IrITERNAL 
InsuLATIor, 

TG-ISOOO 
1 INCH 

. 
floHe 

• -

-

-

" 

, 

COi~STAtIT 

0 
TEMP 

·,ltJTERNAL 

" 

, 

No 

~~O 

. 

t~o 

60°F 
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TABLE 1.2 MULTIPLE LAYER INSULATION 
CONDUCTlV ITY 

r TEMPERATURE 
BiU/HR FT20F OF 

-400 0.000076 
- 10 0.000076 

35 0.000086 
80 0.000105 

125 .' ", 0.000180 
170 0.00031 
215 0.00076 

TABLE·1.3 TG-15000 CONDUCTIVITY 

(AT 1 ATMOSPHERE) 

. TEMP.ERATURE .. '. '.' OF' ....... , ", . .. Bru7HR ft2oF' 

-200 0.0093 
'. - 50 0.0145 

100 0.0195 
250 0.0255 
400 0.0320 

26 

\ 
\ 

..,- " 

~ • ". .. .. ; •• f· • 
i 
I 
! 

• *-



" '.-- --
/. 

,/ 

-JOe- -1+ 
'./ Top View 

-_ .... .- ' ---

/ 
,," 

'. • • ... I •• • • • •••• :. •• •• .' . 

,-
M 

If 
I, 

. ..... . .. -. . " 

Side View 

rn:p~ 

... «~ .. 
-----

TRlJ5..C, "'R.l!~ 
-Z'Z •• -45· 

Bottom View 

<ssun 

<l Sun 

-J1.-

ORlGI!'JAl PACt:: IS 
Of POOR QUALITY 

I 1- "r 7- . --I 
- - - - - -i - -' - - -.-f 
I I II 
I i I 
I 9 gO," I, '17 • 1 
I ~"I 
I ~3· I ' '%.4· I 

I""' I I . I 
I----·i----I 
I' I I 
I z.+. I u· I 
I ~ t 
I '11-' I 'is· , 
I I I 
I I I 

!I +-= ' 
~~ " " '" C--'~- ~!--_/~,~ .. :..,.,=l 

Front Vie .... 

I 
I 
Ito 
1\1 

I 

I Sun 
-r- <J' 
I 
10 

I~ 
I I ~ 

LU 

FIGURE 1.4 Surface Temperatures (OF);O( = 0.2 

I' 

F 
1 
I 

I 
I 
I ! . 

" . 
• I" , .. 

. , . 



. , 
, '. 

" 

. , 
\ 

\ 

a~~O~-I~OO~~2~OO~~3~OO~4~OO 

T. CC 

-~ 
~ -

\ . 
\ 

.'~ .. " . '. , 
+-
'. 

I.Or--r--...r--__.---.--_-_ 

., 

Figura 1.5 V~riation of Voltage and current out,puto fro~ SGlactc~ Photovoltaic 
Y~torial3 as a Function of Te=pcraturo. 

'. . 
i 

.~~-.......~ 

. :,~ .. 

.--~.-

._--
:~ .. 



--­. 

N 
-0 

. " , ' 

/ 
, , \-"-,-

'SOLAR 'ARRAY 

200.0 

......... 
:i... 
~ 

C:.J 150.0 
c::::: 
~ 
~ ...... 100.0 "1 

c:::: 
~ 

c.. ...... 
~ 50.0 ~ 

~ 

0.0 

-50.0 

-100.0 

I'OIItTt<C 

0.. 5001 

1 . I .. .. 
t .. I 

, , 

. I .. - ...... I ,..., · ,.., - "Q t...I 1r::J ...... ,. ..... '-' • I . 
6...J • ; I \ 

-, 

I 

.1 ! . , " 

" I . 

-
." J> 

., 

~ " \ 
1""1 ['£] ..... 'S... . 0 

. 
" It " .. "f .. . .. 

12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6' 

TI ME -:- (HOUR~ ) 
. \ ' 

Figure 1.6 Solar Array Surface Temperature 

... 
1'- . 

, 
. 

\ 

. ...-. 

, \ 
'\~ . 

\ 



-~ . 

... 

.~ . 

.~. 

, . 
. ' 

the radiators, the average array temperature and the peak cell temperature 1s approx­

imately IOoF higher. This would indicate that considerations should be taken to assure 

placement of radiator surfaces so' their heat load and sPace ~iewing blockage would not 

markedly affect the temperature level of the solar arrays. 

To assess the configur~tion sensitivity of coating degradation and insula­

tion effectiveness, a variety of computer analyses were accomplished varying surfaco 

absorptivities and insulation conductivities. For each solar absorptivity of 0.2~ 0.3, 

and 0.5, eight cases were set up AS {ollows. 

Case 1 - Baseline assumptions as in Tables 1.1 through 1.3 

Case 2 - Internal insulation 0.5 inch thick 

Case 3 - Internal insulation 0.25 inch thick 

Case 4 - Internal insulation 0.05 inch thick 

Case 5 - Internal insulation 0.05 inch thick, MLI conductivity increased 

by a factor of 2 

...... ... ~ ... : .. ~. .C?se. ?~.I~t~rp~1. ~~~ul~t}?~.?~5 .i~~~ ~hick, MLI conductivity increased . ~. . .. 
by a factor of 5 

Case 7 - Internal insulation 0.05 inch thick, MLI conductivity increased 

i by a factor of 10 

/ , , .r 
.' 

Case 8 - Internal insulation 0.05 inch thick, MLI conductivity increased 

by a factor of 20 

Results that were being compared in this analysis were shauOlt/ed module 

wall temperature, shadowed module heat loss rate, and sunlit module heat loss rate. 

These comparisons would establish a range of coating and insulation requirements for 

the h<1bi Ulble modules and assess the effects on the structure as a whole. 
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Figure 1.7 illustrates the shadowed module \Ola11 temperature with the 

various cas~s. It io readily apparent that increasing absorpti,:,ity \~uld have little 

';e~f~'t ~~ '~hi~ ~~le because of it~ 'cont1nu~o iocati;~~'th~' si~adow 'of the solar"~array . 

throUghout th~ orbit. Cases' 1 through 4 demonstrate the relatively minor role that 

internal insulation plays in ~intaining internal wall tem?eratures, with a reduction 

in thickness of 1 inch to 0.05 inch increasing the temperature by only 10F, out of a 

total internal to external temperature orop of. approximately 1750 F. The heat loss rate 

from the shadowed module, as sho~n in figure 1.8, confirms the relative ineffective­

ness of internal insulation as the reduction in thickn~ss by a factor of 20 increases 
'-' C ., . ,,::, 

the heat loss rate by only 1t. 

Decreasing the effectiveness of external insulation, however, has a signl-

ficant effect on the module \~'a11 temperature and rate of heat loss. If the de\'1point 

temperature were to ~ held in the rtnge of SOoF, the f.1LI would h3ve to be at least as 

effective as in Case 8, preferably \'lith 10\-:er conductivity., as in Case 6, which Is 

only 5 times the assum~d baseline value. This \':ould maintain the moOule wall \vell 

.' above the de~~nt tem~rature, pr~venting formation of condensation. The trade that 
• .. • •• _"',..' ............... ... ~.. ... .." • • • • • I • '. • • 

\\.'Ould bainvolved \~ith the rr.ore effective insulation '.;ou!d be the increased internal 

heat load that \-lould need to be rejected by active system5, i.e., the radiators. The 

load which would he rejected by the active thermal control system ~~uld he the sum o[ 

the internal heat loads minus the heat which is being lost through the module walls. 

Figure 1'.9 depicts the heat loss from a 'sunlit module. It can be seen t:lat 

the absorptivity characteristics ITk1rkedly affect the heat loss rates. However, tile 

difference lx!tween the rates would be less than the margin for uncertainty thOlt would 

be designed into a thermal control system capable of rejecting approximately 20 till\8!; 

that amount of internul heat load. Therefore, the well-insulated modules ~/ould ap~car 

to be relatively insensitive to the properties of the thermal coatings. 1110 active 
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thermal control system wo~ld subsequently be sized to reject virtually all of thu 

predicted internally gener~t~d heat load. 

, TemF~ratures shown in figure 1.10 reflect the effect of the higher absorp·· 

tivity of ~.5 on the surfaces of the conf1rJ~ration, holding other material properties 

as baseline. Thermal gradients are more pronounced, with a temt)Crature difference on 

one sunlit module being 160oF. Gradients Hithin the truss structur~ are less than 

with the 0.2 absorptivity due to generally warmer surface tempertltures rduicJtitlg to 

the structure. Tumel air is also \ ... armer, though still far b~low a minimum dewpoint 

temperature, with the shadow~l tumel beinCJ -lloF and a $unlit tunnd being 350f'. 'fhe 

c tunnel air temperatures are not significantly affected (by less than 50F) b~" 

variations in insulation performance due to the proportional in':rea:.;e in heat lost d.l:U 

heat gained by the volume. This miCJht imply tailoring of th<! surface coatings and 

insulation placement to enhancE' heat retention in the tunnels. 

1.2.4 Conclusions 

Results of the thermal analysis on the triangular con(iguration hdVC 

'. _":'. q.~n~tra.t~d. P .. r:vmlJer .ot:,.point.s •. " '. " ... ' , ...•. . .. ' . 

1) There is an inherent insensitivity of the habitation modules to thermal 

2) 

3) 

4) 

5) 

coatings when high performance external insulCltion is used. 

Internal insulation is of relatively little thur~~l control valuu. 

ExternCll m.I should have a comlLlction I!ffec:tJvl t~, o~ ~Ir[.'ro>:i:nat.cly 

0.00053 BTIJ/hr ft 2p (e(fective' emissivity of O.Gl) as d€:ter~i1lwd by -ttl" 

analysis. 

Tunnels will prob<:lbly require customized therm"l treatment (or [Alssiw 

internal temperature m3intenc'lI1ce. 

Radiator placement is important to ('(1St? 3f[~CtS on solur .1rruys. ' 
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6) Structural therMal gradients are relatively in~19n\rlcant. 

7), Appropriate insulation sizing and coating selection alone will not 

Gignificantly reduce active thermal control requirements. 

These results ~~uld indicate that exotic module surface coatings which exhibit low 

ahsorptivities and high emissivities for long durations would not ~~ Afunoamcntal 

requiremQnt of the proposed configuration. This would possihly enable more durable 

types of coatings to he utilized at a lower initial build-up and replacement cost. 

" 

There would, however, be SOMe requirement for thermally selective coatings for the 

tunnels to in~rease their heat absorption capahilities and decrease heat rejection • 

When done together with proper insulation design, th~ problem s!lould not be clifficult; , 

This is an area that will require more analysis • 

Bec~use of the clel]1Ol'"ls~rate(l ineffectivcnr:ss of an internal insulation, 

there is no thermal justification for its use. However, it In<1Y be ncsirable to ut.iliz~ 

a thin layer of insulation mnterial for sound dampenin,] or condensation absorption. 

, " 'rile' ~ppro'y.iincite' C'on~uct:ivi t::y' or' the 'ext~t'rial t:\l.Ilt'ip"le· n'yer' tn!;ljlat'i'6~ 'is 

required to be as given in Table 1.4. The nUJ1\.~er of layers that \.,roulcl be used to 

attain this type of performance and the material of which the insulation is compr·t~ed 

will be the subject of a future study. 

Due to the complex profile of solar cells and solar array matrices, 

thorough thermal analysis was not attempted. However, temperatur2S that were extracted 

from the analysis were judged to be a close approximation of actual performance 

levels. Greater modeling detail of this area is required in future iterations. Prelim­

inary results indicate that radiator placement could influence sunlight conver:>ion 
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Table l.~ 

Recommended MLI 

Conductivity Effectiveness 

Temperature Bt~/Hr Ft20F 
of K 

-400 0.00038 

- 10 0.00038 

35 0.00043 

80 " 0.00053 

125 0.00090 

'/' .~ , . 

170 0.00155 

215 0.00380 
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efficiency because the blockage of the array backside radiation to space, raising call 

temperatures. No significant problcr.s are anticipated at this level of analysis, but 

further evaluation Is necessary. Included in this evaluation should be the asgess~nt 

of the th~rmal impact that Would occur with the subsequent additio;; of subsystem ha~d-

, 'ware to the'truss structUre, creating greater blockage of the view to space. 

Greater modeling detail Is also required of the truss structure to more 

effectively evaluate thermal gradients that may occur through the truss m!ltriX. 

Initial results using equivalent flat plate assumptions ind!catP that thermal 

gradients are not large enough to create significant stress problems. n12rmal cycling 
, ' 

th~t would occur behind the solar array during the orbit could possibly be a concern. 

Active thermal control systems will be sized to handle virtually all of the 

module internal heat loads if more effective means, other than insulatiorl sizing and 

coating selection, are not employed to passively reject L;cr~al energy. ~~re sophisti­

cated methods of heat rejection, as analytically denonstrat~d in references 5 and 6, 

can be accomplished utilizing semi-passive thermal energy transport techniques. This 

" wo'ultl' fncl'ude' th~' use of 'heat 'pipes inourlted to 'tHe' pressure vessclwaU' to dist'dbute 

the internal heat load to the structure, maintainirllJ required \o/all temperatures \vlth 

10\.,. insulation levels. Another possibility would be the incorporation of thermally 

activated louvers into the microrr.eteriod shield to open the pressure vessel sur£.::lCC to 

space viet'Jing, increasing the heat rejection capability. Such enhanc~m!!nts of the 

structural thermal energy management s~heme would reduce the size of the required 

acti vc thermal control system, increasing over"ll efficiency. Th~refore lit is rccom­

I1'Cnded that future iterations include a preliminary analysis of such cilpubilitles. 
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1.3 _Ri._Fl_d_ia.;..t_o....;r_c_on_c_e...:p_t_s_. 

Preferable radiator placement In the triangular configuration would be on 

the truss~~rk which is not supporting solar cells. This arrangement was chosen instead 
~ ,. c ~, ~ , ,:;- (> (' (' , ,.. ~ 

of an integral radlator/mi(:rometerold shield because of increased radiator efficiency 

in the shadowed area and con:paratively easy replaceability when degradation warrantn. 

Assuming the orientation of the configuration is \-Ilth the 10nCJ side of the solar array 

roughly north and south, the upper truss area wculd have less incident flu~ because of 

the orhit inclination. Therefore, placement of radiators on this surface would be more 

favorable. 

, . 
, " 

At the recorrmendation of NASA JSC Crew Systems Division representatives, 

heat pipes were chosen as the baseline radiator -element ~cause of t.he technology 

advancements in the field which have enhanced their performanc~ and de~~noability. It 

is also thought that 10nCJ tern performance would be better than convcntionJl (lu~d 

loop radiators because of the segmentation that is inherent in the design. Shoulcl,a 

segment of a heat pipe array become uamaged or degraded, total heat rejection per!orm­

a~ce will be affecte~ by ?nly a small r~rcentage. Fluia loop radiators would, however, .. ........... . . '. .... . . ~ ~ .. . .. .. .... .. . .. ...... .. .. . 
lose a large pe'rce~tage of theIr heat "reject"ion ca~biiit:y \v!len da~cja~\ '~cause' ~{ the 

larCJer radiator area serviced hy a single fluid loop. Design heat rejection capabili­

ties of heat pipes are also significantly higher (by approximately 50%) than c:;.well-

tional radiators, so smaller surface ureas would be required to reject a specified 

load. 

1.4 possible Design Refinements 

I..j.1 Structurally Enclosed t-'.odlJlcs 

A variation of the ba~eliO(~ tricmgular configurution arose during the 
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analysis. The proposed variation is to move the habitation modules internal to the 

truss structure. Some benefits of this configuration change would ba the following 

- . -
1) A more thermally benign envirorunent for the modules. 

2) Placement of the micromcteroid shield on external surface of truss 

structure to enhanc~ bumper shielding distance. 

3) Easily rc!placeable optical s'urfaces for module temperature adjustment • 

To assess this possihle design delta for another iteration on the space 

station confi9urat~,on, changes were made to the baseline thermal math models. These 
~ - : , 

changes entailed placing the modules and tunnels internal to the planar surfaces which 

model the trusswork. Figure 1.11 Illustrates the configuration c}~nge. As shown, the 

radiators are placed at the apIces of the triangle to serve the double function of 

rnicrometeroid shielding and heat rejection. These surfaces replace the stand-o(f 

bu.'TIper shields modeled in the previously described baseline configuration. Thir.: is not 

a proposed iteration, but merely an analytical tool to assess the thermal impact ot 

such a design change. 
..... " -

,. .......... .. '" .. ,. ......... 1 ... 
/Ii ...... 

.. ... e •• "'''' ......... . .' . 
1.4.2 Thermal Comp3rison Hith Baseline 

Using the same assumptions of material properties and locations as the 

baseline configuration, except for the relocation of the I':licrometeroid shield ad 

truSSll/Orlt, TroiS'iS a."d SINDA analyzes were accomplish::d. The results of these analyse::; 

are shown in the t.emperature distribution in figure 1.12. As shown, roodule surface 

temperatures arF. less severe except on the ends, where the benefits of th~ radi~tor 

shielding are not present. Tunnel air temperature also does not benefit from t.hc 

enclosure bec()use of the large view of sp.1ce by the tunnel surface out of the ends of 

the structure. 
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Figures 1.13 and 1.14 compare the shado\vecJ lOOdule wall temperature .:md 

heat loss, respectively, between the basEline and enclosed systems as l~ternal and 

external insulations are degrad~J. It is evident'that cir~~ferential wall tempera­

tures remain warmer when enclosed by the radiator shielding and are ~ess sensitive to 

a decrease in insulation effectiveness •. It is assumed, although not analytically sub­

stantiated, that the modules would also be less s~nsitive to thermal coating 

degradation • 

Heat loss rates are significantly decreasee, which implies a greater heat 

rejection load for the radIators. However, the lower outgoing flux level would provid~ 

a margin for maintaining shirt sleeve temperatures internally should equipment, which 

generates a large portion of the heat load, be powered do~n • 

-, ... /,·.I,!~.Y. /.i~/T present, 01 :;e:: :~:::s ;f: ~t:::::y o:n::":d:::~::·:=:::: ::e, 
J1 . currently configured, would not be driven primarily by thermal concerns. It shOUld be 

• '.r . ". ~ " ,rt9t~q .t~~a~ la,rge.r. te.m~r<lture. Bl'ld.heat,.loss·qeltlls,· between encloseaand open systems, 

). I . would oc~ur 'if the module~ were somewhat clustered. 
/., I j¥ 
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2.0 Space Station On-Orbi~ pynamic Analysis 

2.1 Objective 

The objective for this section -is to dcterfuine the control 

"requirements for Space Station operatio~s including attit~de control 
;: " -' ,~- "C 

and orbit maintenance as a function of the natural on-or~it dynamic 

environment. The dynamic environments s~mulated included gravity 

gradient torques, aerodynamic drag, and aerodynamic torques. System 

requirements for the baseline configuration were determined for 

parametric variations of altitude and mass properties. 

2.2 Introduction 

The Space Station will require two forms of control power 

to maintain an indefinite orbit litetime. Control methods are 

required to (1) offset the altitude losses because of dtmos1Jheric 

drag and, (2) efficientlY maintain the desired Space Station solar 

inertial attitude. The Space Station by nature of current Shuttle 

delivery capability will be restricted to low earth or~lt altitudes 

('. ( (" 

. <230 nmi (see figure 2 .• 1). At these low altitudes, aerodynamic dra.9. 
. . . . ...... e.. -.... . . ... ..... .... . ...... 0' ;. , ... 

is an important factor in orbit maintenance and attitude control. It 

is highly desirable to restrict the lowest operational orbital 

altitude to one in which at least 90 days of free altitude decay 

remain before a catastropic reentry occurs. This period would allow 

for several STS revisit opportunities and subsequent orbit safeing 

maneuvers, or repair to orbit maintenance equipment. 
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Figure 2-1 Near Term Cargo Weight vs Circular Orbital Altitude 

For the case of advanced spacecraft such as the pro~osed 

Space Station, attitude control·has typically been a major problem. 

,The source of ,lJr.evjQ4~ c,ofltrol,dif~ic.ulty hilS been centered on tlte 
'. • • • • • • • .. .' •.• •• • •• • c • • •• • • •• ~~ • • •• • • 

r~qulrement to control a highly flexible vehicle. Designs that 

exhibit cantilevered solar panels cnune particular problems because 

of the low freyuencip.s of the flex modes. If a classical control 

strategy is used, the flex modes arc filtered out of the sensed 

vehicle response. This technique, unfortunately, has an adverse 

effect on the attitude control performance of the vehicle. In 

addition, the closed loop stability of the flex modes is not 
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guaranteed for highly flexible appendages. For highly flexible 

structures the control system must not only account for attitude 

control, but also must exhibit vibration control features. 

Tfie baselin~ 'confi9uration for this study minimizes the 

attitude control problem which is inherent in many proposed Space 

Station configurations. The flex modes of this configuration are 

relatively high (analysis indicates >5.4 Hz) and therefore can be 

filtered out of the sensed vehiclp. response. This allows rigid body 

control below the flex frequency bandwidth with acceptable vehicle 

rate and attitude performance. Furthermore, the behavior of the 

vehicle can be accurately predicted due to the simplicity of the 

structural configuration leading to a minimization of control model 

errors. The control system also benefits from the baseline concept 

since most activity is centralized at the system center of mass. 

Here I chan'ges in the interior configuration will minimize the impact 

on rotational inertias. 

.. ••• • * • ••• _",," " ._ " .... or •• ' •• ". ." " . .... . " . .. ,,' .. 
" ~." 

'2.3 Orbital Altitudes Analysis 

A general pur~ose computer program was writte~ to 

investigate ~)e parameters affecting orbital altitude. This program 

addresses the contribution of five major natural phenomenon which 

disturb the upper atmosphere causing density fluctuations in the 

100-300 nmi. Energy equations are used to predict orbit altitude. 
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2.3.1 Atmosph~re Model 
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The five atmos~heric variations most relevant In the 

dynamics modeling of the up~er atmosphere are listed in order of 

-importanc~ as follows (1) v~riations with the II-year solar cycle, 

(2) variations with short term solar flux and sunspot activity, (3) 

the diurnal variation, (4) variation with geomagnetic activity, and 

(5) the semi-annual variation. Solar flux related variations may 

produce a IO-fold density fluctuation. This surpasses a nominal 

density model by a factor of 3. 

(' '. The' current 'model accou~ts for the II-year ~olai 

sun-cycle, day/night cycles and the disturbing effects of geomagnetic 

storms. Predictions of solar activity are projected into the year 

1993. The next occurrence of a solar maximum occurs in 1990. The 

solar model is based on best fit statistical data. 

2.3.2 STS Payload Performance 

. .... . " " ", .,.The: Space .statJ.on ,o'per'i'tiQnql.'i'lti,tu.de~ ,a,r,e .lim;i.·t;.cd by 

the orbiter cargo delivery capability. Higher Space Station 

operational altitudes require le~s orbit maintenance energy an~ 

reduce the concern about reentry. Figure 2-1 gives the cargo weight 

(payload items plus payload support services) as a function of 

, ,circular orbit altitUde for delivery flights from Kennedy space 

Center (KSe). This figure was obtaineu from JSC 07700 Vol. XIV 

Revision G. Only near term capability is presented, since long term 

capability is not defined sufficiently 'to provide adequate data for 

generalized performance plots. Cargo weight capability drops 6ff 
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sharply at the 200 nmi altitude without the addition of OMS kits. 

OMS kits have not been funded for the orbiter. At the present 

orbiter delivery altitudes, aerodynamic drag becomes the prime design 

driver for operations and orbit maintenance equipment. 

2.3.3 Orbit Decay Time 

In preliminary studies, a nominal density vrofile was 

used (data obtained from "U.S. Standard Atlilosphere 1962") to 

determine aerodrag at the respective altitude. Energy which is 

dissipated because of the frictional aerodrag l~ss is integrated each 

orbit and subtracted from the total energy, yield'lng an altitude 

history, thus, predicting free decay time. Current work indicates 

that a nominal density profile is not Gufficiently accurate in the 

prediction of a long term altitude history, since the solar flux 

related variations produce large density fluctuations. 

The free orbit decay time histories for the lightest and 

.' ~~~'Vi'~st 's'[J~~~' 's~~ii~n 'd~~'ig~ ·c·~~fi·~i.t~~~i~ns . (design';Jted' oi and ~6' 

respectively) were d~termined for an initial insertion altitude of 

230 nmi. Design configurations ~ through 5 fall within the band 

established for configurations 1 and 6. The summary results of this 

investigation are shown in figure 2-2. The results also reflect both 

nominal and worst case solar sun-cycle atmospheric densities. 
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" .. ,." .. ". 'The'~esults shown .i~ figure.2-2 reveal that foran\orbit 

insertion of 220 nmi and for a nominal atmospheric density, Space 

Station configuration I will reenter in approximately 140 days, 

whereas, configuration 6 which is much heavier wUl reenter in 300 

days. Backlng up 90 days from the reentry time, to allow time for 

contingency rescue operations, configuration 1 must not fly below 

208 nmi and configuration 6 must not fly below 187 nmi, for nomlc~l 

atmospheric density. For a worst case atmospheric density, 

configuration 1 must not fly below approximately 240 n~i and 

configuration 6 must not fly below 215 -nmi. These altitudes limit 
.'"' 

STS cargo ca~ab1lity for supply to the Space Station as seen in 
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Figure 2-1. Thus, to guarantee a free decay time of 90 days for a 

revisit and orbitsafeing.maneuvers, an orbit maintenance methodology 

must be incorporated into the design of t~e Space Station. Emergency 

decay time can be increased by feathering the Space Station to a 

minimum drag attitude at the sacrifice of power generation. The 

solar power generation would be reduced by 50%, whereaG the averago 

drag force would be reduced by 66.6%. 

2.3.4 Orbit Maintenance Methodology 

Normal altitude can be maintained by several methods 

including (1) drag offset thrusting, (2) periodic reboosting 

utilizing the Hohmann minimum energy orbit transfer method, and 

(3) constant thrust to spiral out and free decay to STS revisit 

altitude. Each of the last two methods are designed to extend th~ 

coast period to agree with STS visit frequency. 

Drag offset thrusting can be accomplished with 

·c~~vend.~n'ai "c'he'l~i~~i 'e~g'i~~~' or' \'i1th' eI"e'ct'r'ic propu'ls'ion' eng'fnes' ,.',' 

such as Ion engines. The Ion engines use approximately 1/10 the fuel 

weight of 6hemical engines, but require a large amount of' electrical 

energy, approximately 14 kw per .1 Ibs. thrust. The offset thrust 

engines must be located on booms cantilevered frolll the Space Station, 

and rotated at orbit rate such that the engines tire tangential to 

the orbit. The required thrust level is very small, ap~roximately 

0.1 lbs., thus simplifying the design of the support booms. 
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The amount of fuel per year required to maintain the Space 

Station at altitude using a chemical engine with ISP of 400 seconds 

is shown in figure 2-3. To maintain an altitude of 200 nmi, would 

require approximately 12,480 lbs. per year. The Ion engines would 

require only 1248 Ibs. per year • 

'b -..,. 25.0 I- , ! I 
I I'j 
~ i ! 

~O"OI \ . j!" "jl 

1:).0-+--~:---+----;'-----f-------,1------+-----1\ ! I I I 
10.0 

I -;.'~ .. I ! 
I . . ''''""'I-1-l i -1-!-+-t-;.._.t 

O.O-!-I---I-----+. -----!I----+ I j 
180.0 200.0 220.0 240.0 260.0 2SC.O ~co.o 

ALTI TUDE. MILES 

Figure 2-3 Fuel Weight Per Week to Maintain S~ace Station at 
Altitude with an ISP of 400 Sec and NOnliui:ll Aero 

Another method of orbit maintenance makes use of periodic 

reboost utilizirig the Hohmann minimum e~ergy transfer method. This 

method would involve choosing an altitude range based on the e>:pected 
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Orbiter revisit frequency. Suppo~e for configuration 6 that a 

minimum al ti tude of 200 nnli 'is ~esi re-'d and that the Or~bi ter can (, 

'revisit in 90 days. The-required upp~raltitude for 'nominal aer~ 

density from figure ,2-2 is approximately 213 nmi. The amount of . . 

chemical engine fuel required for this transfer is 2482 Ibs. If this 

orbit revisit fre4uency is maintained throughout the year, then 

10,065 lbs. of fuel would be cltpended per yenr. This method is 

slightly more efficient than the constant thrust method because the 

Space Station is flying at a higher average altitude with less drag 

force •. However, Hohmann reorbit burns cause load transients for the 

Space Station that do not occur for the constant drag alleviation 

burn. Also, it would not be practical to use the fuel efficient Ion 

engines for the Hohmann transfer method because of their low thrust 

level. 

Constant thrusting Ion engines could be used to spiral the 

" ,,~p,,!~e, ,~t~~~<?~ . ~o .. ~, h,i9~~r" <?~b,i~. ~~:re ,th.e.y, would be then t~rned, Q.f,f, 

and the Space Station allowed to decay down to the STS revisit 

altitude. This method~ould be the most efficient for fuel weight, 

but would require large amounts of electric power. A t~ade study is 

necessary to see the overall program impact of this approach • 

• r 

2.4 Attitude Control Analysis 

A general purpose computer simulution (SS Dynamics) was 

developed to predict the on-orbit dynamic:.; of the SpacE: Station. The 

program initilizcs with the Space Station on-orbit and calculates the 
., 

time histories of altitude and attitude as a function of the dynamic 
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environments encountered. The simulation computes altitude losses 

and the control torque time histories necessary to maintain the Space 

,Station in a solar inertial attitude. Mass and aerodynamic 

pro~ertles for the Space Station are computed within the 

initilization phase of the program as a function of the Space 

Station's individual components. 

Rigid body equations of motion were formulated for the Space Station 

using Newton's second law of motion and Euler's moment equations. 

The equations of motion are solved using a variable step Runge-Kutta 

integration routine. .The analysis coordinate systems and Space 

Station solar inertial attitude are sr~wn in figure 2-4. Coordinates 

subscripted with -r a indicate inertially fixed coordinates; 

coordinates subscripted with ·SP" indicate S~ace Station principle 

body fixed coordinates; and coordinates subscripted with "0" indicate 

orbit rate rotating coordinates. 

.. 6 .. ........ - ...... ".. .." .-...... .. .. ............. " .. " •• .. .... ".- _. • • .. .... ",: .. ·t"" 

2.4.1 Disturbance Torques 

The Space Station will be subjected to environmental 

for~cs and torques including aerodynamic drag and torques, 

gravitational forces and torques, solar radiation torques, and earth 

magnetic torques. The lotter two environments were not included in 

the analysis since they were several orders of magnitudes small~r 

than the aerodynamic and gravitational torques. 
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Figure 2-4 Space Station Coordinate Systems and Space Station 
Solar Intertial Attitude Configuration 

2.4.1.1 Aerodynamic Toryue 

At altitudes in the range of 100-300 nmi or more the 

atmospheric density depends not only on altitude but also on the 

degree of solar activity. At this altitude range the S~ace Station 

is said to be in the wfree molecular flow" regime. Molecular 
. 

particles that impact the Space Station wil~ either adhere, thereby 

imparting all its relative momentum, or may be reemittedafter 

impa.ct. 
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In this study, only the projection of the area normal to 

;the orbital velocity, vector was considered.' The aerodynamic 'drag 

" 

'," . 

'0 f~ice'is defined as: • e , . c· . .-" ~ . 

FAERO = Q*S*CD*l1/IVI 

where S = Projected Area 

CD = Coefficient of Drag 

Q = Dynamic Pressure 

V = Space Station eM Velocity 

* = Multiplication 

'I.::' ' ,A Station which )s, yeometrically ,symmetric about. its 

center of mass will not experience any aerodynamic torque. To 

minimize the drag, the Space Station is flown with its X-axes in the 

orbit plane (see figure 2-4). In addition, the aerodynamic torques 

about the Space Station Y and Z axes will be cyclic in nature, since 

the Space Station flies a solar inertial a~titude. The aerodynamic 

torque is defined as: 

TAERO = R Yo FAERO 
." ••• " fi •• ,," " .- " " ."" ' .. " .. . " " . ; " ". ~ -. 

where R = position Vector from CG of Space Station to the 

Center of Pressure. 

The aerodynamic torque on the Space Station is not very 

large at altitudes of 200 nmi or gre~tcr. The,aerodynamic torque for 

configuration 1 at 200 nmi is shown in figure 2-5. The peak torques 

in the body coordinate system ure less than 2.0 ft-lbs. There i::; a 

small component of x-torque due to CM offset. 
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2.4.1.2 Gravity Gradient Toryue 

G~avlty Gradient torques may act on any vehicle WhODC 

inertias about its principle axes differ from each other • 

general form of gravity vector gradient torque equation used in 

this analysis is 

TGRAV = 3*Of-tEG*'I!l2*UR X I. UR 

where OMEG = Orbital Rate of 'Space Station 

I = Inertial Dyadic of Space Station 

UR = Normalized Space Station Position Vector 

I 

oe.: 

The Sp~ce Station will orbit with its principle Y-axes 

perpendicular to the orbit plane. This will result in a zero torque 

about the Svace Station X and Z principle axes and a cyclic torque 

about the Y axeH. To maintain the principle y-axes prependicul~r to 

the orbit plane and the solar array perpendicular to the sun, a mass 

properties management system will have been enforced to account for 

". "'. t~e .i.:':n Beta angyl!lr. misalignments. The gravity gradient tor4ue 
.. .. .... ".., • "... " .. " .... t "," ..,,". "" "".. ".. .,:. " •• " " •• " . .' . 

equ~tibns expressed with respect to the SP coordinate sytitem 

(figure 2-4) reduce to the following when the equations of motion arc 

referred to the pr~nciple axes 

TGRAV (1) - 0 

TCRAV (2) = -3/2'*OMEG**2*(I3-Il)*SIN(2"'TH) 

TGRAV (3) 0 

where TH = Angle between Space Station z axes and Local Vertical 

11 = Principle Inertia About X axes 

'I3 = Principle Inertia Abo!lt Z axes 

61 

.. 
I 
! 

C', ' 

I' 



,. ... 
" 

.' . 

/'-. 
I 

. I 
.~., '.' 

_. ,'. 
6't! .•• ,,-,- ""' ............ ~". -" .• ~,; "' .• , .'., ~. ;,. \. ',' . .' .. .. r,- - ,'(0 ,·,,1 .. ..,,:, - .. ""', ... ........ - .. ~----.~ ...... -..-. ____ a...r.- ... _____ __ 

'~f 

,'-~.-. 

_,' '4 

::~-----. 

... ~ '- ". \~"'-....­
~ ..... "";. ........... : 
,.,: .... _ ................ -

....:... '.-;-;~. 
~. 

; -.: 

, " 

" .~...... . . . -..... 

_ ...... 

'.' --- ... ':--..' 

,--.. 

;1 

,. \. 

With the proper management of the mass properties, the 

quantity (13-11) can be minimized, thus relieving the peak torque 

requirements of a control moment·gyro (CMG) system. 
'.':- ' 

The peak torque and momentum storage requirement caused 

by the gravi ty gradient environment on th'e studied Space Station 

design configurations are 40.5 ft-lbs. anc. 39,500 ft-lbs-sec., 

respectively. Mass property management has not been performed for 

thesu configurations to reduce the disturbance torques. 

... '.{ . { v., 

2.4.2 Attitude Control Assessment 

The t.ighl~· flexible structure that typified previous 

Space Station proposals presented severe problems to flight control 

system designers. Space Station configurations that have largu 

extended solar arrays present Q twofold challenge to the control 

system. First, the arrays, when deployed in this fashion, have low 

frequency cantilevered beam modes (not to mention flexibility in ~he 
. ... • ....... . ·.4 ....... _." " .. ' ..... .. " ....... ............. ; .. o. • 

. 'solar 'ceil membranes themselves). Second, the extended arrays 

increase the system rotational inerti~ on which any control authority 

must act. The first problem, flexibility, is a structural stability 

issue. The control system must be designed such that structure modal 

resonance is avoided. This can be done at a very large cost to 

oveiall system performance '(i.e., simple maneuvers may take days to 

accomplish), and/or the cost of a distributed control system. The 

second problc~, inertia, further defeats performance by reducing the 

SystClii angular acceleration achievable through the applied control. 

torque. 
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The above problems result alrectly from the solar arrays. 

Another aspect of the control problem deals with Spacu Station 

geometry~and mass pr9perty change~ during nominal operatl~n,modes. 

The control system must adapt to these discrete ch .. mges to ~nsure 

maneuver performance. Again, previous Space Stations have eKhibitea 

operational modes that produce major changes in overall system 

configuration. These changes result in significant mass and geometry 

chan~ns as senn by the controller. 

,The problems of control for the Space St~tion have 

expensive solutions in cost and performance. As a preliminary 

guideline for the development of the Space Station pro~osed herein, 

the minimization of these control problems was a goal of high 

priority. To accomplish tIlls objective, the flex frequency spectrum 

must be raised significantly to achieve desired separation betweeh 

the flex and controller passband. Further, a configuration was 

sought that was relatively insensitive to operational activities • 
• .. :.. ~...... .. .. .. .. ........... .. .... ,.. ........ .... .. lP .. " .... .." .......... " .. .. .." 

The'confi~uration that resulted from these (and other) design 

guidelines is the triangular design embodied in this report. For the 

proposed Station the flex spectrum begins at approximdLely 5.4 Hz. 

The controller passband can now be placed below this frequency and 

still provide impressive maneuvering performance (sec figure 

2.4.2-1). Also, the enclosed configuration focuses all operational 

activity in the central area which is always near the center of mass 

of the system. Large masses (I.e., an Orbiter) can be placed here 

with minin,a! impact on system rotational inertias. Clearly I tliiti. 

configuration achieves the goal of minimizing the control problems ot 
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Most important, these advantages have also 

I , 
, .. 

.. ""' .... .... ,. ... 

I,. '. 

produced many o~eratlonal benefits so the solution to the control 

problem has not been achieved llt the sa.::r1flce of the prhlary mission 

objective, space operations. 

Two classical methods are used to design control systems; 

each with their respective emphasis. The time domain, state-space 

mctho~s llsed in optimnl (or modern) control theory emphasizes the 

perfor:nance of the vehicle. The frequency domain analysis is used 

when stability issues are a concern of hig!, prlority. E'or the 
::; 

op~rational Space Station, performance requirements are low 

com~ared to other space vehicles while system stability is an 

important control objective. Hence, the frequency domain design and 

analysis techniques were used. The control systum deslyn is applied 

to maneuver about one principle axis to charactcri~e performance ' 

parameters. The flowchart of the rate and ~osition feedback system 

is included for review (see figure 2.4.2-2). Classical technique,s 
_. • • ••• ' ........... '6 ..... OJ .. .,.. .. • .. ... ..,.. •• • • • .... , ;. ,,,, • 

. ' were 'u'sed to"size sys'tem loop gains and control the overall 

maneuvering characteristics. A 450 attitude change maneuver was 

selected for response analysis. 

A model of the vehicle disturbance environment was 

determined to quantify the cyclic and secular (non-cyclic) torQu~s. 

Also, for the proposed Station, solar inertial pointing is a 

necessa ry rnar,cuver i ng rcyui rement (approximately o. 06o/sec). After 

examining the character of the environment, the control system 

effector selection was made. Because of the predominant cyclic 
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nature of the disturbance torques a momentum management scheme was 

devised using CMG's (control moment gyro's) and Res (reaction control 

system). The CMG's arc ideal for the cyclic torque management~ b~t 
~. ' \.., ~ '0 (" , . 

the noncyclic disturbances will accumulate momentum in the CMG's 

until the storage limit (saturation) is achieved. To desaturate the 

CMG's a cancelling momentum vector must be applied by the RCS system. 

The described system, is the means by which the vehicle holds a solar 

inertial attitude. The CMG's will require in excess of 

40,000 ft-lb-sec while the peak torque requirements (as discussed 

later) should be in the 1000 ft-lb cla~s. A vendor search was 

conducted to verify the feasibility of these CMG requirement£ and a 

candidate cluster of CMG's was located. The reader may note that the 

Skylab CMG's were cap~ble of 160 ft-lb of ~eak torque with 2300 

ft-Ib-sec of momentum storage. 

To study the maneuvering capabilities of the Station, a 

commanded 45 0 angular displacement was imposed. To accomplish this 
•• 0 ••• 00 •••• ' •• '. ° 0 • • • • '. '0' • 

maneuver, RCS firings were examined as a candidate effector system. 

This technique produced adequate performance, but the step impulse of 

the RCS jet firings causes higher frequency excitation (see figure 

2.4.2-3). As we have seen on the orbiter, RCS firings during 

operational periods can result in resonance in the flex spectrum. In 

other words, the forcing function has a higher frequency content as 

well as timed low fretluency pulses based on the phase plane switchillg 

lines (rate limits and attitude deadbands). A maneuvering scenario 

that utilized only CMGts circumvented the excitation problems of the 
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RCS (see Figures 2.4.2-4 and 2.4.2-5), but could not achieve adeq~a~e 

performance at acceptable peak torque and se~ular mOffientum levels. 

Certainly, a large enough CNG system to accomplish attitude hold and .. ..- ";, 

maneuvering is po~sible, but only when accompnnied bi a severe weight 

penalty. 

A method of maneuvering the vehicle uoing a combined RCS 

and CMG authority was researched. This syst~m uses the RCS for 

coarse attitude changes and then transfers authority to the CMG's for 

Co 0' u 'fine tuning and holding a specified attitude. This technique uses 

......... 

, , 
.. ' 

",:'; 

, 
~ . , 
\ 

, \ 

r .. 
: ' 

the ReS torque capabi1i ty which is easily available and the benign 

nature of the CMG's for fine attitude management. This technique 

synergistically applies the benefits of both systems. The resonant 

~ulsing character of the RCS in the vicinity of the desired attitude 

is traded for the smooth torqueing character of the Cr·1G' s. Also, ,the 

peak torque required of the CMG's for maneuvering has been 5ignifl­

.... cartly reduced. The attitude time history is shown in Figure 
.. .. " "" ....... " ....... e • s ••• 10 • ,. •• • .... . 

• s'· 

Controller torque levels applied to the vehIcle were 

varied from 1000 ft-Ib to 100,000 ft-lb. The value that produced 

adequate performance time histories as well as afforded sufficient 

closed loop frequency separation between controller and flex 

passbands was 10,000 ft-lb of peak torque. The ReS, when located at 

the vertices of the triangle, are sized to 100 lb. thrust to yield 

the dCnircd tor4ue level. 
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With the control system intact, the closed loop fre~uency 
. C 

reoponso of tho system must be analyzed to verify the necessary 
. " ,r. " '':'" 

;. ~ c'. . C , '" l'" ,,. ". ... ~ , r (. r ( • .... -~ {'.. C '" -

separation between the controller bandpass and ih~ flei spe~trum of 

-thevehlclo. The controller bandwidth 11mi t was defined at -3dB in 

tho frequency domain. In figure 2.4.2-7 the closed loop response is 

compared to the flex frequencies of the vehicle. The controller 

limit is two decades below the first flen modal frequency. The 

response curve is located in the frequency domain as an inverse 

function of system inertia (increase in inertia lowers the frequency 
',n' ( hr.,:.. <': _ • ,~~. ,£~ ",:/, Iw" (t,..~ . ~ ~ ~. . f., f' 

respohse) "and a-direct function of control torque' (increasedtor~ue' 

.- , . 

leads to hIgher frequency response). The amount of separation 

between control and flex is dictated by the slope of the response 

curve. If the absolute value of the slope is low (curve appears 

close to horizontal) more separation is required. The response curve 

in figure 2.4.2-7 has a steep frequoncy response and therefore can be 

moved closer to the flex spectrum without, significant moaal resonance 

"pr'oblems;' 'Th'e 'separat'ton in- this system (two decades) allo\is '.f·ar 

flcxibilities encountered during operations (i.e., moving large 

masses by a remote manipulator system). If maneuvering requirements 

are increased, the control torque can be increased to 100,000 ft-lb 
. -

(1000 lb. Res thruster at the apc):cs) and the Specc Station\~ill 

exhibit peiformance qualities similar to flying space vehicles. With 

appropriate modifications, the Space Station can be transformed into 

an interplanetary type vehicle. The advantages of this robust 

structure allow for an impressive growth scenario in both size and 

performance. 
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The attitude control system survey included magnetic torque 
• ~ • I _ 

bars and electric Ion engines. The torque bars, used for CHG 

, desatura,tion, were considered too cumbersome and low in torqueing 

capability. Th~ electric Ion engine has many desirable propeities 

(i.e., high ISP, throttling), but requires large power s~pply 

(approximately 14 kw/engine/.l lb thrust) and yields low thrust 

, C' •• " 

levels. If maneuver requirements are dramatically reduced a ,fu~ther 

look at these and ~imilar devices is warranted. 

o ( :.. J 
( .' . ~ .) ( ': 

2.5 Conclusion 

This investigation of the S~ace Station on-orbit dynaruicn 

as .:: function of the natural dynamic environment surrounding the 

earth has yuantified several potential problem areas and identified 

potential solutions. The foremost problem is a function of t~e 

terminal altitude that the STS can achieve with a sizeable payload, 

(less than 220 nmi). At these low altitudes, aerodynamic drag 

.,: .. ' '. ·reduces· the ·£tce' 'decay ·o·r1:H·t ·1i£~tir.ie' 'so drasticaliy 'that' tlie 'design 

of a fail s~fe'orbit maintenance system becomes a high priority item. 

Inherent in an prbit maint~nance system at low altitudes arc 

increased propulsion consumables. This problem will be significantly 

reduced if the STS can deliver cargo to an altitude of approximately 

300 nmi. At this altitude using nominal drag, configuration 1 would 

reenter in 1350 days and configurat:on 6 in 2870 days (see figure 

2-6), as compared to 140 and 300 days, respectively for the 220 nmi 

orbit. 
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Recent predictions of STS payload capahility by the 

Systems Engineering Division show that the use of a direct insertion 

morlo will allow for delivery of 60,000 lb. p~yloads to a 300 NM 

altitune (see Figure 2-7). 
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IIlCLINATION a 28.& 

--- FILAMENT WOUND 

CIRCULAR ALTITUDE - N.M, 

. .' •. .4o... . ~.. .. . 

Orbiter Payload Capability/Systems En9ineerin~ Division 

At this altitude, an Ion dra9 alleviation system would 

'only need to supply ~ thrus~ of .01 Ibs. This size engine requires 

only 1.4 kw of electric power, and 125 lbs of fuel per year. 
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Based on a detailed study of the on-orbit dynamics of the 

Space Station, a solar inertial attitude hold mode for the Space 

Station Is realizable, if a mass properties management system is 
I' ~ (<!" ~ f" • 

. ~nforced. The environ~ental forces and torques are predominated by . ' 

the 9ravity 9radient torque. This torque becomes cyclic about the 

V-axes, if the X and Z principles axes of the Space Station fly in 

the orb~t plane. The aerodynamic torques are much smaller than the 

gravity gradient torque and are cyclic. Thus, a CMG system Ciln 

efficiently maintain the desired Space Station attitude. A method of 

maneuvt:rlng the Space Station using a hybrid RCS/Ct-tG control system 

offers many advantages and is recommended. 

.. .,. ~ .". .. "..."...."... ~ . .. . '" . '. . . ~. ". ' .. 
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~.l DEPLOYABLE TRUSS 

·3.1.1 Introduction - --
. The structural concept for the Triangular Space 

Station incorporates three large multi-purpose trusses lo form the 

sides of the equilaterial triangle. Not only will these trusses 
, 

form the basic foundation for the Space Station construction, but 

they will also provide large planar areas that can serve as work 

and storage platforms and support for the solar arrays and various 

manned modules. 

" "-

This section provides the rationale and analysis 

required to support the feasibility of constructing these large 

trusses for the Space Station environment • 

3.1.2 Truss Requirements 

The basic re4uirements identified for the trusses of 

the Space Station.are 
, ~ • .. .. .. ... • • .... .. ". .. •• • 100 • • .... . ..... . .. . . . . . ~ • •. ".. I" • 

a. Form a planar surface approximately 72' x 125' for 

the attachment and display of the station solar array. 

b. Serve as a support structure for mounting 

radiators, plumbing, electrical wiring, payloads, and manned 

modules. 

c. Serve as a work platform for construction of 

orbital transfer vehicles and repair of large satellites • 
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d. Be automatically deployable from the shuttle cargo 

bay to minimize EVA for construction. ' 

e. Have a serviceolife of 10' years or more.' 

Specific structural requirements for the truss that were 

identified as being im~ortant from other'studies of large space 

structures include: 

a. Have a relatively hi9h natural frequency. 

b. Have adequate strength and stiffness properties 

" for temperatures between -250o F and +350oF. 

c. Have a low coefficient of thermal expansion. 

d. Have a low weight for launch to orbit tranDport. 

e. Have a packaging characteristic that will observe 

the shuttle payload bay reyuirements. 

3.1.3 Truss Concept Study 

.... 
, " .. '. ° ° ·Review,'o·f' the 'existing, l,~t.er·cture, indicated that tiler.e. 

are many studies concentrating on s~ace structures that can be 

used for constructing large space antennas and platforms. 

Reference 1 contains several papers presented at the NASA Langley 

Third Annual Technical Review in November 1981, concerning large 

space systems technology. Several of these papers were used to 

establish the concept for the Space Station study. Table 3.1.1 

shows a summary of de~loyable beam and platform systems 

development from reference 2 that have emerged as being morc 

mature concepts ...,ith reslJcct to actual working models. Also Shown 
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in this table is the Tetratruss Concept proposed from references 3 

and 4. . ,-' -

c 0 

'l'.'1ble 3.1.2 shows a summary of the deployable designs 

from references 2 and 3 which were considered to meet the S~ace 

Station basic requirements. All designs will fold to fit in the 

payload bay and be deployable in space. However, some will 

require EVA and some will require additional flights to deliver 

the entire Space Station frame structure. 

. ' 

The first two designs from this table 3.1.2 are 

limited by their length. The longitudinal members do not fold and 

their total length will be limited to the length of the payload 

bay. Since this length is less than the required 72 foot minimum 

dimension of the planar area, the truss would have to be cut in 

half and ~ackaged into two sections 36 feet long. The six truss 

halves required for the total Space Station structure will then 

'f'i t' in't~' th~ "p'ay'io~d' bay '~~~' ~a~' b~' deiiv~i:~d' 'in one' In'iss'i6n: ' 

However, an extra EVA will be required to rejoin the severed 

halves. 

The third design is limited to a single beam 

,configuration by its folding characteristics. A total planar 

surface cannot be constructed on the ground and deployed in space. 

The total planar surface will have to be constructed of individual 

beams. Using, for example, 10.41 foot long ,by 2.0 inch diameter 
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TABLE 3.1.2 DEPLOYABLE TRUSS DESIGNS 

Deployed PackagJd Partially 
Deploya{f 

~--------~~I~--------~~----+--------(j) Warren r 
, 

Truss -
Tr'!nsverst 
Fold 

C:o!l!e ~) 
Cfou·Bracid -
TRnwel'S. 
Fold 

C~!:I. ® Cro!$·£lraced -
Tran~mSl 
.nd lOllgitudin" 
fold 

K Bp''' -
,0 

long;!u:!i;tu 
Fold 

K Drace - 0 
LOt:ilitudind 
fold 

C0 

lIDATflGS 

TI3n1veUfI, " , 'Fof:f' • ~
"~ 

.* .... .. ... • . .. , 

, . 
I , 

.' ' 

L ,----~~----__ ~ __ ~L------------~------------~ 
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tubular members, it 1s possible to package the required 21 beams 

for a complete S~aceStation structure in the payload bay and 

deliver them to orbit 1n one launch. However, several EVA's will. 

be required to co~nect the beams" tog"~ther to form the req~ir~d 'c 

. ·surface. . ' 

The fourth and fifth designs arc limited to a 

longitudinal fold which will allow f~r packaging, but not allow a 

sufficient number of beams to be launched at one time to erect the 

complete Space Station framework. Using the 10.41 foot by 2.0 

inch diameter tubular member e~ample / ~rilY eight beams can be 

packaged in the payload bay at one time. The Space Station 

framework will require a total of 21 beams, so a minimum of three 

flights will be required. Additional EVA's will be required to 

connect the beams together to form the necessary planar area. 

The sixth design is the only configuration that will 

"allo\ol' ilac'kagih"g" and' deploymen't 'without an' EVA to construct the 

necessary planar area. Using the same member dimensions, the 

three planar trusses required for the total Space Station 

framework can be packaged in the payload bay and delivered in one 

flight. In addition to meeting the minimum EVA for construction 

requirement, the Tetratruss concept is also the only redundant 

structure of the group s~ that there will be alternate load paths 

in case a member is accidentally damaged. This is a great 

advantage from a structures and life point of view. 
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" Figure 3.1.1 shows the packaging and deployment 

capabilities of the Tetratruss concept from reference 3. The 

particuiar' size of (planar t~'us!"shown in this figure was the 

- maXimum planar area that 'could be packaged' in' the payload "bay' 

diameter and be dcplo~ed in orbit without an ~VA. It can be seen 

that a very large planar area can be packaged using this concept. 

It does not appear that there would be any 

restrictions on any of the designs of table 3.1.2 with respect to 

the materials used for the truss members. Therefore, all truss 

concepts could meet the specific structural requirements. The 

main difference between the designs of table 3.1.2 would be the 

number of launches and EVAs required to construct the framework. 

Designs four and five sould be eliminated because they will 

require several launches to get the total Space Station framework 

to orbit. All the other designs except the Tetratruss will 

require extra EVAs to construct the sides of the triangular Space 

,S,t9t.i.on ... , ~s. .an: a9d.it.i.o.nal, ad.v.aotag,o,· ,tb.e .'I:etr<,ltruss. bQs .a ,hi.gh.ly 

redundant structural arrangement and as shown by reference 2, has 

effective stiffness properties that are of isotropic nature for 

analysis purposes. Therefore, in this study the Tetratruss 

concept was selected for the Space Station framework. 

~.l.i. Truss Loading 

Preliminary structural d~sign loads that have been 

identified for the Space Station framework members include 
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equipment and payload docking, thermal, dynamic, gravity gradient, 

and orbital transfer. Frame loading conditions for mission events 
.- ,'., ," , . 

such as ignition, liftoff, and ascent were not considered to be 

,applicable 'f'or' i~di'/iduai member' design since the frame" will be in 

a ~ackagea state and. assumed to be adequately supported in the 

shuttle payload bay. This detail ~ill be refined in a later 

report. 

It was assumed for this study that equipment and 

payload docking loads would present the critical member design 

condi don ~ Since the Tetrc{truss configut'Cltion is a statically 

indeterminant structure, a computer model was· generated to 

determine the individual member loads. Figure 3.1.2 shows a 

finite clement model of one module of the Tetratruss configuration 

having an esti~ated 1000 pound limit vertical load and 500 pound 

limit lateral load applied to a typical frame node point. 

Soluti~n of this problem shows that the maximum member limit load 

'is '±: ~91' pounds.-" ,: ,',' ...... 
' ... 

Thermal loads in the frame members can ·be minimized by 

a careful eelection of mcmbei materials having a low coefficient 
, . 

of thermal cxpariGion. Prcllninary thermal a~alysis of tho Space 

Station from Section 1.0 indicates thai the critical frame in the 

system is the one that supports the solar array. This analys1~ 

shows that the frame will have a temperature cycle from 150 0 to 

20°1" as the station rotates about the e.arth. It does not appear 
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that this temperature variation will cause any significant ther.mal 

loads in the members of the 125 foot long frame regardless of tho 
\.- ': 

materiDl selected. However, as the Sface Station configuration 

'and r.:;ateiial' selection mat'uren;' the 'effects of thermal expa'nsi6~ 

and contraction should be reevaluated. 

Frame ruember load resulting from gravity gradient 

effects have been forculated in reference 5 for the Tetratruss 

configuration. The results of reference 5 show that for trusses 

less than one mile wide, the member forces ,due to gravity 

gra~ient, are 'r~lati~ely smDll'wfi~n 6om~aied to the other member 

design loads. Therefore, t~uss member loading due to gravity 

gradient effects are omitted from this study • 

Dynamic loading of the individual frame members have 

not baen assessed at this time because of a detailed definition of 

the Space Station. This particular analysis will require use of a 

.. .... • • .o. .,: .. ' ' .. dynaoic ,coJl1l>ute-r. 'Code. and ,·deftf)i tron' of. a forcing function •. · . 

. ' 

'1-

, , . 

Because of the ,large dynamic model and computer time that would be 

required to obtain a solution, it was decided that, this phase of 

the Sp~ce Station study would be deferred. An assessment of the 

ocnber dynamic loads and frane frequencies will' be presented 

,later. For the preliminary analysis, the proposed 1000 pound 

vertical and 500 pound lateral loads will be assumed to be 

sufficient to include dynamic effects. 
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Orbital transfer, control, and reboost loads in the 

individual frame members have also been investigated in 

reference S for the TetratrUSG configuration. The model used for 

the reference S study considered thrusting the fram~ structure 

at it~ edge to produce only inplane frame loading. T~c propulsion 

considered was Ion engines producing .001 pounds of thrust per 

engine. The conclusions reached irl reference 5 is that tho member 

loads produced by this model are insignificant. Hc.wever, as the 

Space Station design and ~ropulsion require~ents become better 

defined, this loading should be reconsidered. 

, Therefore, the ma~imum member loading condition 
L ( .. ~) , .: ( , ; (. • ' • 

established fcr the truss occurs for doc~ing and equipment sto~age 

and shows a magnitude of ± 491 ~ounds. For purposes of this study 

and inclusion of uncertainties, a limit design load of ±500 pounds 

will be used for member sizing and analysis. It has also been 

assumed that the trusses can ~e manufactured economically if all 

the members are identical. This assu,mption will incur a weigh t 

penality for the members showing a lower load in Figure 3.1.2 uut 
•• ~ •• • •• • .. ..... •• • ... ".' • • •• fo.· •. •• . • •• .. • 
will add conservatism to the system for the other loads' that were 

considered negligible. 

l.!.~ Truss Materials Study 

The b~cic requirements for structural muterials used 

in large space structures arc usually high stiffness, low density, 

adequate strength at operating temperature and loads, low 

90 
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coefficient of thermal e~pansion, and a service life of 10 years 

or more. 

. high stiffness of the frame is not only required to 

enhance the dynamic characteristic of the system so that it will 

not res~ond to low frequency vioration, but also to provide 

bending and axial rigidity to the station. Low density materials 

are primarily required to provide a light packaged structure for 

transportation to orbit as well as a high natural frequency. 

The material must also have adequate strength at its 

operating temperature to react the design loads. HO~Jever, th"e 

analysis shown in section 1.0 shows that the Space Station truss 

has an apparent maximum operating temperature of only 150oF. It 

does not appear that this temperature will cause any si9nific~nt 

degradation of m~terial strength properties. As a result, th~s 

material requirement will be insignificant for the material 

comparison. 
. . . . .. . • •• 0 •• e •• " •• . ... . . . . ' .' .... . . 

• o· • '. ' •• ' 

Because of the large size of the truss" frame\'Jork, it 

ap~ears desirable to keep the material coefficient of thermal· 

expansion as low as possible to minimize the thermal distortion of 

the Spaco Station. The truss frame facing the sun will expand 

because of its warmer temperature while the two. frames shielded by 

the solar array will be cooler and contract. The station will 

then warp and no longer form a symmetrical cross aection. This 
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may not be a real vroblem for the Space Station; however, a low 

coefficient of thermal expansion will:~till be considered to be an 

important (Jarameter for the material selection until this effect 

can be adequately evaluated. 

Table 3.1.3 shows a compari,on of various selected 

materials that could be used in the manufacture of the truss 

members. The best candidate materials that will fulfill the 

stated requirements are those that ~~hibit the highest stiffness 

to density ratio and have the lowest coefficient of thermal 

expansion. The gra~hite/epoxy composites and the 

_graphite/aluminum tubing of Table 3.1.3 appear to be the best 

choices. A final selection between these two candidates will be 

based on their relative cost and ability to meet the service life 

requirement. 

The graphite/epo~y cumposites have been in development 

for a long time and have proven themselves in various aeeas of 

aerospace products as both prima ry .and .se!=onda ry structl!res. T~~ . 
•• : •••••••••• ••• _." •• , ... • " •• ' ••••• e •• • • •• • •••. 

Space· Shuttle 01-1S Pods and payload bay doors are made o~ graphite/ 

epoxy compositc~ and huve been certified for a lO-year service 

life. In addition, the manufacturing and repair procedures have 

been established and proven. Several papers have been presented 

in reference I .concerning radiation and other space environment 
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effects on the graphite/epoxy composites and none appear to 

indi~ate any degradation of properties that would affect the Space 

Station life re4uirement. 

, . 
The graphite/aluminum metal-matrix composite is also 

attractive for space applications from'the standpoint that these 

composites should inherently have a IO-year or better life. 

However, this composite is still in the technolog~ development 

stage, and it is expected that the cost of this material would be 

greater than graphite/epoxy. A com~lete investigation covering 

the 11 fe and cost of both graphi te/epoxy and graphH.e/alunlinum 

should be conducted prior ~o the final d~siyn. In addition, oLhei 

materials such as graphite/polimide should be evaluated. 

aased on this limited materials study, it is 

recommended that the graphite/epoxy material be used for the 

baseline design. 

, . l .. l . .Q •• . ?pBc.e. St4ttion' .f'·rame.Geometry·· ..... ' ... ' .... 

From preliminary layouts of the triangular-Space 

Station configuration, it was determined that the overall 

". .. .: .. '" 

dimensions of the truss frame should be approximately 72' x 125'. 

To construct a planar surface using the Tetratruss cOllcept, it is 

required that all truss members have identical lenyths. 

Therefore, one of the overall frame dimensions must be held 

constant while the member length is varied,to meet the other 
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nvpra11 dimension. Holding the 125' frame length constant and 

allowing the member length to be as long as possible to reduce the 

number of members required, the study re~ulted in a frame that has 

a 72.19-foot width instead of 72 feet, and a member length of 

. 10.41 feet. Figure 3.1.2 shows a computer generated ~lan 

view of the proposed Tetratruss f~ame. Strength integrity of the 

10.41-foot long member must now be established. 

1.1.1 Truss ~~~ Sizing and Weigh~ Analysis 

The limit design load for the truss member was 

established as ± 500 pounds in Section 3.1.4. Using an ultimate 

factor of safety of 1.4 for structural in~ri~rlty requirements, 

the design load becomes ~700 pounds. The member will be sized for 

the following failure modes: 

a. Column buckling 

b. Strut compression 

c. Strut tension 

d. Strut bending due to handling loads 

.... ... - .. 
ex~rcise very similar to the study that will be pie~ented herein. 

Therefore, this analysis will take advantage of the work that has 

already been done. From reference 2, the truss member design was 

a 2.0-inch diameter tube with a .02S-inch wall thickncps. This 

study will also use the 2.0-inch diameter tube but will establish 
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the necessary number of graphite/epoxy plys for a wall thickness 

that will be required to produce positive margins of safety for 

the loading and failure modes presented above. 

,. 
' .. ( , ' 

Manufacturing of the tUbing from composites will 

require that the material be laid up in a balanced fiber 

orientation. This will prevent the tubing from becoming warped 

during the cure cycle. Using h unidirectional ply tape, a tube 

having seven plies consisting of two plies at 00 , four plies at 

±450 , and one at 900 will constitute a balanced lay-up. The 

. balanced configuration is shown in the following sketch. 
'.' 

- - -----A---

" -.. .. " .- .. ' .. . . .. . .. .. .. 

This composition will consist of 58%, ±45° plies, 29%, 

00 plies, and 13%, 90° plies. From figure 3.1.3 this lay-up will 

have a coefficient of thermal expansion of .5 x 10-6 in/in/OF. 

Also, the seyen plies of tape will constitute a composite 

thickness of .035-inches. 
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ORIGfNAL PACE IS 
01 PO,JR QUAlITV 

. For column buckling 

,- " ~' 

Assume a pin ended column, L. fit IO.t!-,'::. IZS~ f.:- • l071 .. 

1.,/1 ';' 12!/.7D71 :: 177 

c17t8' 
~. -_. .' 
v, = 
c~ (L.lf) %. 

For strut compression 

·zz 

(il)" (ZB x la!,; 
( /7 7)"'-

Material allowable from table 3.1.3 is 200 KSI. Thus, 

the margin of sefety is high for compression. Mar9in of safety 

for column buckling is 

•• , • • ... ' •• 6 

Iv1. 5. = 
BB21 
'3JBZ 

- I ': 

For ~trut .tension 
, .... -... ..' ... ... .. ..... 

lC :; tr. :' 3 IS;:; f$ I 
7 G 

t '.77 .. .......... -.~ ..... ~ .... ~-..... . 

'"' -... 

From table 3.1.3, the minimum tensile allowable is 200 

KSI. The margin of safety for tension is high. 

For strut bending duc to handling loads 
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The strut must be checked for failure due to bending 

under its own weight during the truss construction In a 19 

> environment. Assume a pin'ended beam. < 

cWo; w-J~ Atl.· .;"; ..... , 
.' . .' d 

W ~ (.'?,)(.O!i~)lIC:S'): I.S4 

M 't!1_ (I.!:q.)( (~s) 
I /0/1</ 8' (3 

Bending str~ss 
.', ~ .. ~ -: (Z4.()!,)( r) 

.. e· . .I.'. . -/I' . 

The margin of safety i::; high for this failure mode. 
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. Analysis of the seven-ply configuration shows that the 

minimum margin of safety for ultimate loading is +1.77 and that 

the critical failure modo is column buckling. A smaller margin of 

safety could'be calculated for a thinner wall tube,'but in order 

to keep a balanced lay-up, tho coefficient of thermal expansion 

from figure 3.1.3 would either increase or become negative. 

Using the member dimensions noted above and. the 

density of .056~/in3 [or graphite/epoxy composite, a single tube 

that is 10.41 feet long will weigh 1.54 pounds. The co~~uter 

geneiatedCfigure 3~1.2:indicates that there arc 848 members in the 

Tetratruss frame. 

Weight of one frame ... (848) (1.54) .. 13060 

Assume a 20~ weight increase for member end fittings 

and foldable joints. 

Frar.lc Yl£:ight ::: (1. 2) (1306) = 1567~ 
Total weight of Tetratruss frames for the Space Station 

r 
. . . . . '. .. .. . ,. ... 

. . . . . ... l:onf.i-gu'ra td on·:· .' '. " ...... " .. . . ~. . . 
.Total \-/eight = (1567) (3) = 4701e 

Natural frequencies of the trUGS structure were 

determined from the NASTRAU computer code for three particular 

cases of a simply supported trUSG loaded by its own member weight, 

.1 
loaded by its member weight plus the distributed mass of the solar 

i cells, and loaded by its own member weight plus th~ mass of an OTV 

attached to one ~orner of the truss. Figures 3.1.4 (a) through 

'~·.l .. 
~ 101 
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3.1.4 (c) show the first, second, and third mode shapes of the : 

frame with the distributed mass of the solar cells and the 

calculated natural frequencies for these mode bhapes. A summary 

~~ of the lowest natural frequencies for the three~load caqcs Is 

shown i,n. table 3.1.4 • . . 

TABLE 3.1.4 Summary of Frame Natural Frequen=ies 

FRAf1E CONDITION NATURAL FREQUENCY 

UNLOADED FRAf'lE 9.78 Hz 
-

FRAf1E HITH SOLAR 5.44 Hz 
ARRAY 

- . 

FRAHE iH TH OTV 7.95 Hz 
HaUNTED AT CORNER 

.. 
• " ow' •• -It •• ,,".. .." ... ",,, .... 4 " ••• 

; ... ,," . " '. t." " 

1.!.! pa~load pacKaging Analysis 

Reference 3 and 4 show schemes on folding the large 

Tetratruss frame for packaging. However, reference 3 gives 

spocific em~hasis for packaging the largc planar arca in the 

shuttle payload bay. This scheme is shown in a parti~11y deployed 

~osition in table 3.1.2 and indica~efi th~t the upper and lower 

members arc hinged at their mid-length and made to lie against 
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I each other when the truss is fully collapsed. In this manner, 

r 
, 

t 
r 

t 
I 

the whole truss is Q tightly compacted bundle of tubes for 

packllging. 

The dimensl~ns of the packaged tr~ss are then a 

function of the tube diameters. Figure 3.1.5 shows a plan view of 

the upper surface of the truss. In the fp1ded configuration, 

there will be two tube diameters on every line connecting a node 

point and one tube diameter for every node point. For the 

deployed l25-foot direction, there are a maximum of 12 lines 

connecting node points and 13 node points. 

.... ' , ,", 
(, ::: 

PacKaged 125 ft. length = (2) (2) (12) + (2) (13) = 7~a = 6.2'. For 

the 72.l9-foot direction, there are eight lines connecting nodo points 

along a 600 diagonal and ninc node points. 

Packaged 72.19' length::: [(2) (2) (8) ...... (2) (9) 1 Sin 600 ,;,. 43.3" =3.6' 

The lower surface packaged dimensions will be slightly smaller since 

... ' .... ~ ' .. " t:·h.er-e .are ,fewer- .member·s .. · . 'F-rom ,Figur.e· ,3'. i;6 ·the packaged' sizes 'arc' " 

Packaged 125' length::: (2) (2) (12) + (2) (13) ::: 7·~' = 6.2' 

Packaged 72.19' length:: [(2) (2) (7) + (2) (8)] Sin 600 - 38.1" = 3.2' 

From the partially deployed view of the Tetratruss in 

table 3.1.2, it can be seen that the packaging concept requires that 

the u~pcr surface members fold downward and the lower surface members 

fold ulJl1ard. Sir,ce these members are folded in half, half the member 
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length from both upper and lower surfaces will fold against a full 

length diagonal member. The diagonal members of the truss do not 

fold. There should not be any interference between the upper and 

lower folded members since they are rotated 30 0 from each other. 

Therefore, the total packaged length of the truss is the length of 

the diagonal member. The maximum packaged dimensions for a single 

truss are shown in the following sketch 

T 
• "'l 

The three required Space Station trusses will fit in 

the shuttle cargo bay with room for other equipment as shown by 

the proposed scheme of figure 3.1.7. 

3.1.9 Deployable Joint and Fitting Study 

.... ...... R'e'fetc'ric'e~ 3;'~ ~' c3'nd' '7' 'present concepts' for th'c" 

deployable joint and fitting designs that will allow compact 

packaging of the Tetratrus~ frame. The basic req~irements for the 

deployable joint are that it allows compact folding, automatic and 

reliable deployment in a spccc environment, and provide a rigid 

member when fully deployed. .n 

Figure 3.1.8 shows Lhe foldable joint concepts 

presented by references 3 and 4. The joints discussed in 
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Reference 3 depicts a spring loaded··cabinet door- ball and socket 

_locking mechanism. This cunc~pt envisions the socket side of the 

hinge as a capsule, containing ~n adhesive that would be ruptured 
r (} 

on contact allowing the material to cure and firmly hold the ball 

in a locked position. This idna would indeed produce a rigid 

joint but probably produc~ an undesir~ble cloud of adhesive spray 

particles in the space environment. It appears possible to 

improve on this design and provide a locking mechanism that is not 

dependant upon an adhesive for rigidity. The joint of reference 4 

shows a spring loaled scissors mechanism that will deploy the 
,~ ,~n ( 

joint and hold the member in an extended position. It appears 

that it would require a substantial tensile load in the member to 

open the spring loaded scissors joint once it has been deployed; 

however, the j~int is not totally rigid. This particular design 

is a refinement of a desiqn used on the SEASAT synthetic aperature 

radar e~tendable support structure. The main refinement is a 

reduction of the packaged hing~ into a cross sectional ared no 

" " ,~ " , 'i~~ge~' ):ha'rt' ttie' in'ember's' "to 'whfch" i't '1s' atta·ch'e'd • , .... 

Figure 3.1.9 and 3.l.~O show central node,fittings as 

proposed by reference 3 and 4, re~pectively. An additional 

requirement for t.his fitting is to have the ability to secure 

payloads and ~quipment. The fittings of figure 3.1.9 seem to be 

the best suited for this requirement as the center of the fitting 

provides an unobstructed and adequate area for the addition of 

male or female docking hardware. Also, reference 3 indicates that 

112 

. -( 

; 
d 
! 



/ 

:,- ,-

: <"'-.. 

t (. 

,to •• 

. i 

\e:,3'2 
Pl. ..... 'i';'w 

'WlOt ~T,", ~:.,~;,.=t ~m\.".,~ 
(1.<. .... " .• t:) . 

3£)3-2 
P\."N ~.i_w 

Pi .... J<)\~, ~C,':>:_ir_$.tn'h<', 

~""'~~"\f' 

)D2e~ 

FIGURE 3.1.9 CENTRAL NODE FITTING {REF 3) 

113 

. -.' . 



I , 
I . . r 

" ! 
I 

.. ~"" I 
" '- -~, 

I 
I 
I 

, c. ! ' c· 

, 

I 
I 
I 

I .. , " r- : ... , • : · 
t 

I • 
: ! 

r · · I · • · 
-' 

• : · · I · I 

( 

. . . 
...__----..--t.5E:mI ! U'" ......... L.-:J·':~ 

I·.,. .: . .,....-;-:. '~~I" "'"=l~~ .. 1... u .......... I' ..::...iJilll .... ' ...... "" . ~ . .. ... . 

\ 
",t : 

\ 
\: 
- ! , 

:r . 
FIGURE 3.1.10 CENTRAL UODE FITTI~G (REF 4) 

I 

l 
I-

114 



-... " ... ~ 

.. qi ...... 

these clustered fittings have boen manufactured for testing from 

injection molded graphite reinforced thermoplastic materials 

indicating a low cost approach to the design. The fitting of 
,"4 

figure 3.1.10 indicates a very busy and costly concept requiring 

complicated machining not only for che node fitting itself but 

also for the member end fittings. It would appear that a node 

fitting concept chosen from figure 3.1.9 wo~ld be more desirable 

for the Space Station. 

~igure 3.1.11 shows an umbrella-type truss deployment 
~ ,. ,~l t' 

scheme from refert!nce 7. This approach would l;Jrovide tho spring 

energy at the truss node fittings so that the deployment springs 

at the member hinge joints cl~picted in figure 3.1.0 could be 

eliminated and replaced with positive mechanical locks. 

1.1.10 Space Deployment Conct!pt 

Deployment of the Space Station truss framework can be 

'. ,":-.; ~iccomplishe'd' 1"0 ·tw'~·phas';s'.·' 'Toe' Hrst 'pliase consists of reinoving 
, . 

the packaged truss scheme depicted in figure 3.1.7 from the 

payload and rotating the thr.ee trusses forwa rd 900 as shown in 

figure 3.1.12. The three comIllon frame corners sho\m in figure 

3.1.12 (a) (which are also frame edge node joints), are hinged by 

a ball-and-socket joint to allow the forward rotation. As the 

frames ar~ rotated, the other frame edge node joints will lock 

into place by a mechanism similar to an· automobile hood or trunk 

latch, one fram~ side containing pins and the other frame side 
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contains the latching hooks. It Is anticipated that this phase of 

the deployment will require astronaut assistance since an 

automatic rotating system would impose an unnecessary weight 

penality to the payload. 

'The second'phase of the d~ployment scheme is shown in 

figure 3.1.13 where the truss work is extended. The frames will 

expand outward as well as longitudinally. Because of the 

simultaneous double translation of the frames, it is not expected 

that the trusses can be deployed sequentially. This is the 

critical phase of the deploYI.'lent scheme that requires thut all 

members of the truss unfold at the same time to prevent' binding. 

In addition, the energy contained in the deployment mechanisms 

must be attenuated toward the end of the daployment cycle to damp 

inurtia loads in the joints. It is expected that the only 

astronaut assistance that would be required for this phase is the 

final inspection of the frames for damage and complete deployment. 

As stated earlier, the Tetratruss concept is a highly redundant 

"s't!ructure' so't.hat 'the'd'amC:Hj'e' irtcut'red by any strut member' or, joint'" ' 

will not cause a complet~ loss of the structure. It ~hould also 

be pointed out that the truss is repairable. 

The expandable Tetratruss concept is feasible for the 

Space Station frame structure; however, only limited models of the 

concept have been built. The technology of the large planar trus: 

is available but needs to be proven, particularly with the 
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mechanisms involved. Therefore, the conce~t needs to be evaluated 

with respect to building a large planar truss and testing the 

de~loyment characteristics in the near zero-g environment of a 

,water tank. 

l.!.!! Conclusions and Recommendations 

Analysis and rationale have been presented in this 

section that support the feasibility of constructing the large 

planar framework to meet the requirements of the proposed Space 

Station. Based on this concept and analysis, it was found that 

these large frames do not neces~~tily have the same 'stringent 

requirements imposed on them that some of the industry reports 

used for their concepts. For example, the reports indicate that 

the frames arc primarily used for support of solar arrays and 

antennas suspended by long ~tructural booms which vould inherently. 

be critical for dynamic and thermal loading. The present concept 

not only provides a well se9ured substructure for the solar array 
.' . .... buj.: als,o. I2t:Qv,i.~e.s .pl~H)az;, ar·ea"f.or"\:lork 'p'lat'forms and storage . .. .. . . . 

, . 
support. Consequently, the dynamic requirement to for~ a stable 

surface is only with respect to coupling with other dynamic 

systems of the space station. Preliminary thermal analysis of the 

s~ace station h~s shown that the max~mum expected temperature is 

only lSaoF which is almost negligible ~s far as degradation of 

,frame material properties is concerned, and with the proper choice 

of composite material composition and lay-up direction, the 

resulting thermal deflections can be considered negligible. 
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Investigation of frame concepts proposed by industry 

shows that the only scheme av~ilable for the automatic deployment 

of a large planar area without a great amount of astronaut 

assistance is the Tetratruss-design which was baselined for this' 

_ study. Evaluation .o~ all the reported concepts indicated that a 

minimum EVA requirement was the o~ly roal separator for the design 

as all concepts could be made to serve the Space Station purpose. 

However, some would require several launches to transport the 

total Space Station framework to orbit. In addition, the 

Tetratr~ss concept was the only d~sign that offered a structurally 

o n redundant system that could allow severe damage to the truss 

members without losing the system. 

The critical design load ~onditions for the Tetratruss 
- ' 

Space Station concept considered payload docking, thermal, 

dynamic, gravity gradient, and orbital transfer. It was 

determined from these conditions that ~ayload docking and dynamic 

, , ,,_,' ',19,a,ds, ,we,r,~.t,h.e.l,ilo.s,t. c:r.i,t~ca.l. £91;' t,he ~np~yidual frame members. ' -.l\n, 

analysis was made of a typical Tetratru5S nodc joint using an 

assumed combined limit docking and dynamic loading of 1000 pounds 

normal and 500 pounds lateral to the node. Since the structure is 

statically indeterminant, a computer solution was obtained which 

shoved that the ma~imum member design load is 491 pounds liffiit in 

tension or compression. This figure was rounded up to ± 500 

pounds for the member sizing analysis. A safety factor of 1.4 was 

used for ultimate sizing. For economy of manufacturing, all truss 
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members are proposed to be identical. This will impose a weight 

penality for those members showing a lower design load, but adds 

conservatism to the redundant structure. 

Comparison of various materials that could be used in 

the manufacture the truss members revealed that those best suited 

to meet the proposed requirements were the graphite/epoxy and 

graphite/aluminum composites. The most important parameter for. 

this comparison study was the low coefficient of thermal expansion 

which allowed negligible therrn~l displacements. Material strength 

.at operating conditions, while not all that important at the 

estimated temperatures and relatively low member loads, was dlso 

included as selection criteria along with the high stiffness 

needed for a high natural frequency. Graphitc/ep~xy composite was 
. . 

selected over the graphite/alUminum composite primarily due to the 

. . . 

expected cost of materials and manufacture. A detailed analysis 

of cost comparisons will have to be performed later. 

.. .... ...... .... ; ...... .. .. .. .. " .. .. " .......... < ... 

Final sizirig and analysis showed that the typical 

frame member is a 2.0-inch diameter tube with a .035-inch wall 

thickness and is 10.41 feet long. The critical failure mode is 

column buckling and shows a positive ultimate margin of safty of 

1.17. The 2.0-inch diameter tube is nade of 7plys of 

graphite/epoxy tape for a balanced ply lay-up having a very low 

coefficient of thermal expansion. Using the density of .056 

pounds/cubic inch for the composite, the .weight of one tube is 
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1.54 pounds. The computer analysis indicates that there arc 

846 members per frame, therefore, the total weight of the SlJace 

Station framework is 4701 pounds ~hich includes a 20% factor for 

the additional weight of member end fittings and node joints. 

Calculations for .the frame natural frequency shows that the lowest 
. 

frequency is 5.44 hertz and occurs for the condition of frame 

memberweight plus the distributed mass of the solar cells. This 

frequency is substantially higher than other Space Station 

concepts reviewed in the literature. 

"It has' been shown in the' proceeding &. lwsections that r' 

the Tetratruss concelJt can be collapsed after its construction on 

the ground for storage in the shuttle cargo bay and deployed in 

space with a minimum EVA. The success of this concept is its 

dependability and reliability of the frDme joints to deploy once 

the framework is in place outside the cargo bay. Figures 3.1.8, 

3.1.9, and 3.1.11 depict joints and deployment mechanisms from the 

.,:- .' '. p.tct;a.t!-l!,1;} .. ttJa~. C! r.e. .fc;;asiqlr;i .h.0.\~.e~~r { ,gevelopment .of, thes.e, .. 

mechanisms on l~rgcr scale models needs to be completed. 

Therefore, it is recommended that a program be, dev~loped and 

initiated to fabricate several foldable joint designs and 

incorporate these designs into a subscale Space Station framework 

structure for evaluation of the most reliable and dependable 

performance. 
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3.2 Handling Equipment 

/ 
, . ! 

I.: " 

During the normal everyday operations of the Space 

Station, it is nec~ssary to move equlpmeht, modules, pressure 

vessels fuel tanks, and ot~~r spacecraft components from one 

location to another. This requires handling equipment which would 

either be remotely operated or manned. In either case, the 

requirements are somewhat different from ground handling equipment 

such as cranes, forklifts, etc. Ground equipment must be designed 

for lifting objectives under one-G force field and then 

transporting those objects. Handling equipment for orbital 

" operations need only to transport objects and then to position 

those objects to secure them. In the present Space Station 

configuration, the handling equipment should have a reach of about 

100 feet and should have the capability of operating either on the 

inside or the outside of the stat jon. A manipulator similar to 

the Shuttle Remote Manipulator System (RHS), but b/ice the size, 

is evaluated as a station RMS. These station maniulators will be 

.a.q:qcbe,d .. t,o .. the: e~ge- .at; .th,c. :r~tratx:us~.ll)iq\o{ay pe.tw~e,n. ~ne apex 

modules. The dynamic effect of handling a 187 I~IP payload was 

determined for this configuration including the loads and stresses 

at the base of the RMS • 

125 



/ 

. i 
d .' . 

.. ~ 

J .. , , 

, , 

c 

f 
-, 

• 
'. '-

t· 
I 

'\ \' 

t 
. .-

'" ; 
" . 

--, 

( 

:\ , , 

/ 

\ 

3.2.1 Requirements (Goals) 

A) Two manned m~nlpulators 

o Handling OTV etc. 

o Rescue Of one crew from an immobilized unit 

by the other unit . 
8) Each manned manipulator should be capable of easy 

inside to outside conversion 

C) Each manned manipulator should be capable of 

reachin9 the base of the other (for rescue) 

D) Crew in each manipulator can operate in shirt 

sleeve ';"'.d :.:onmcnt 

E) Crew should be capable of EVA from 

manipulator 

F) Each manipulator shall be capable of dockin9 with the 

o Space Station module 

o Orbiter 

o The other manipulator 

.... .' . 
'G)' .' c-apahll: i ty' f~r "one "man! pu'la tor uni t to reloca te 

the other manipulator 

H) The manipulator.chamber shall have sufficient 9as 

storage to resupply chamber at least once 

I) The payload bay stowage should bo based on 

minimum Orbiterfli9hts 

o Both manned manipulators should be launched in 

one mission without docking airlock in payload bay 

o One manned manipulator should be able to be stow~d 

with docking airlock in the payload bay 
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3.2.2 The Manipulator Concept 

Two types of manipulator systems are considered 

A. Manned Manipulator System - This system would have a 

manned capsule attached to the end of an articulated boom as shown in 

Fiqures 3~2-l thro~9~ j.2-4. This capsule would be pressurized and 

would have its own life support equipment to provide a shirt sleeve 

environment for the operator. It would have the necesary controls so 

that it could be translated in any direction and would have the 

necessary pitch, yaw, and roll controls. Attached to this capsule 

would be a pair of manipulator arms operated by the man inside the 

capsule. This capsule would al~o have a standard docking port for 

personnel transfer (module to module, shuttle to module). 

B. Remote Manipulator System - This system would be 

similar in design operation to that of the Shuttle RMS. The end of 

the manipulator could have an end effector, work platform, or 

grappling arms. It would be operated from within the Space Station 

, ",. '.' m<>pu.l.e .b.l! .cl.i.re9t vision and/or closed circuit TV. . .. ...... I. . .. . .... .. ' .. 
.. '., . 

There are advantages and disadvantages to either system. 

However, they both can use the same basic manipulator arms. This 

manipulator arm could be a specially designed arm based on the reach 

requirements and paylod stowage, or it could be a scaled-up version of 

the Shuttle RMS. 
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3.2.3 - loads And Stresses 

The purpose of this section is not to show a thorough 

stress analysis of the manipulator system, but to evnluate the effect 

that tho manipulator tip loado would havo on the attachmont to tho 

.. Space Stat~pn struct~re. It is anticipated that these manipulators 

would be fastened on the cdgc of the tetratruss structure as shown in 

figure 3.2-5, midway between the modules. This location is the bost 

for reach capability but tho worst for structural loads and 

deflections. If this tetratruss is too flexible, the RMS response 

time will be too long; if the loads are too largo, tho tetratruss 

. c c _ ,_ .:. 0 individual members may be too weak in Euler column bucltl1ng. Tho 

I 
.~ I 

I 
I 

I 
I 

local members adjacent to the base attach structure of tho r~nipul~tor 

can be increased in size. This section will evaluate tho amount of 

local redesign required to insure strength intogrity of the tetratruss 

structuro and relntcd'i~ to the maxium excursion velocities which load 

the system • 

. - .. -..... - '. ' .. . .. ' .. '. . ... e ••• 
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3.2.3." OPERATIONAL STRESSES (CONT'D) . 
FOR THESE CONDTIONS, THE STOPPING DISTANCE, S, SHOULD BE LESS THAN 

2.0 FEET. HHEU THE FLEXIBILITY OF THE Aru.1S AND JOINTS f~RE CONSIDERED, THE 

TIP LOAD AT TUE RMS END EFFECTOR IS Fl = 55 LB. 

SPACE STATION R."IS CRITERIA AND DESIGN 

REFER TO FIGURE 3.2-5 FOR A DYNAf.HC HODEL. THIS TII-1E, FOR DESIGN 
LOADS, ASSur~E THAT THE SHUTTLE IS AT THE END OF A MANIPULATOR ARt" THAT IS 
SIt11LAR TO THE OASELIUE RHS EXCEPT THAT IT IS BIGGER. BASED ON A LAYOUT .. 
OF THE r,tANIPULATORSTOHED IN THE PAYLOAD, THE GEOl'tETRIC SCALE IS ABOUT 2.0. 

ASSU1~E THEN A SCALE FACTOR = 2.0 ON ALL THE DIMENSIOilS. ASSUME THAT THE B00:1 
HATERIAL IS GRAPHITE EPOXY, THE SA~lE AS FOR THE SHUTTLE Ri·tS. SINCE THE 
~10DULUS IS ONE-TO-ONE,'lT IS DESIRED THAT THE STRESSES ALSO BF. ONE-TO-ONE. 

TO OBTAm THIS CORRELATION, mE r1AxmU:,1 TIP FORCE MUST BE CHOSEN. 

. .. " .. "" .. " ". . . " ' . ~ " . " " " " " " " " . " "" " ". ; " " ." ... 

136 
IEC For. 10CS (Oct 18) 

j 
I. 

1 

L 
i 
1 

I , 

'/ 

.' 



/ 'I 
/ j 

/' "!,,Y 
" ,'" 

/' 'j 
,/ ".,-

,.' 

/ 

. J:" 
a' _0' 

--' .. 

-., ",,'" 

,~ .... ,. , 

, I 

. .;.c 
.. ; .. ,.---
,,' 
' .. !.. 

I 

! 

, . , 

OEr. 

f 

~-Il?-Y2.. 

3 , '2 ~ :3 III 

;,- / 
,,' , l-

I ... ~I 

PUI t!l. or -
SYOE3S A~nLV3IS nE~OnT r.~T I'!O. 

TI'~ , 

:s re a 3 S5.r ('c ~AI T) -
O~IG'NAL PAce IS 
0,. POOR QUALITY 

~ , • It 

-/ 
I., /. SPACE sr¥lrJoIIJ /J4/}IVIPvL/?ro,e 
r .. ... J t • •• • • '.' .' • • • • ••••• ' '.. '.. .. ........ • 

I r .' 
,- i. 

/1 
// ' /. 

" " 

.; 
'/ 
/ 

/ 

/~ 
'I 

SPACE' srnr/orJ T£TlC'11J 

reGIs!:; 

. .' 

F/q 3, Z- 6. SPAce S,AT/O~ rnAruIPu~AIl:Jr..... 1)Y~~rt\'(. j 
('f'y,) D c L-

137 
J:C For. tODD (Cot 78) NAS"·JSC 

;' 

/' 

I 



, i 

.V 
,/'/ ... ~ 

. ~ ! 

, . 

t, '--,' 

, 
\. 

'. 

\ 
, " 

,I ' 

,. .' 

, ... -.. 

. ' ,"",. ·'1 '\ ,: 'i 
'r 

I 

I. ' 

...•. 

:.. . 

I 

..... 

.. , .. . .,. .. ~ 

f'rg:; ;;t5.S.s$t.S~1 
tiifU;\(W tj', 

I, ' 
" , 
!/ 
I .. -.-- '/ .' '1 ' 

STnESS AUALYSIS nEPOOT 

I 
.,' . / 

(," .-' 

. .U!.. I' -
~~~;~~~----------------~TI~l~~,--------------------~~~nk~~"~~~.~~.-------------~ 

ca - 17-82. 

OEV. 
go 2 .. 3.1 " f) P E. t:z,q ,//0'" A1... ~.,.rz G s.s ss (C OM T) 

t='Ofa <r; -::. 0-: · L. 

T I-}E.N Cf,'-: IIJ,C,' - M~e"L 

I, r .. 

, 
Mz.. I,- Ca.. . , :. - - C, M, r, 

~ -
\. 

, . c ' , c . 
LE.r T7-I E- M 0 11/1 fVI) r.s 8E. 

M, =- F, L, .I 

I, =-

. " ... .' '.' ., . '. . . .... .. .. rz- ~ !- . • '.. '. 7T.l?: i 1.; ~ 
" F, L, - es 7TEl J t.J 

])1-)z. 
D,/ .2.. 

:: 
"Dl. Z. t'l.. 
'0,2- -t, 

Dl "\. :/:'1- .h-
D, '" t/ L,. 

F"&.. -P, 
-. c 

I 
,I 

2-
(2. ) I L/--. a 2 -2. 

S I tUc.. C. 77,t f: /V11) X. TI P {:" ~,~ ~ f:- /-;-' ~/2 

"5 /-Ie) T rL /Z /eMS l.s Js- d I 

138 
lEe FOrD 1000 (Got 70) 

/ 

I 
" 

.' : 
< 



r: ",,', ,,/,' 

" I 
I," I j" 

I . j . \;. ~ I Ij' , '/ /' 
I," ' 

" 
I 
I 

f 
I 
I ~,," ........ ..u..V"C'la...'~ -.,~-... ~.- ............. ---~--

I 
l' 

, , 

I 

-.' 
, /. 
,( ~ : 

, " 
.: I 

'/ 

" // 

,&T~E3S A~ALV&IS n~PDnT 

_ ~-17-~Z. 
~, xti: f i eft§; 

3 .. 2 .. J,I 

• 

\ I /',: 

I ,. " 

PAt! t::I. or -

I/, 
:' ,'/ 
/./ 

cCmep VIP LVIZ'S 

mfllU/puI.Aron... Af{e 
r d~ 77r/ e SPAc.e- STA"DrJ 

/-
" 

,I " 
" 

,I,. 

' .. " . 

I 

, I, 

I 
; /.' 

,:-P' 
, -, 

,,' / 

'.;- ;> 
.,' /1 
, ;' 

I .. 

. ' . 

• i j 
/. ~ 

.; 

?11z. - Ig7J dO()/b -
Lz.. = J I 4- F-r 

C ',' ,_ ~., 
c '. , ,(. ( "D~ :: 3011.) 

~ 
J c'·' c 

tL eo Oi./O ItJ 

TN ~ R Ii. /..,q 7".1 0 '1/ S hi / ~ /.3 £TU,.)[Z 6;V 77y;' e. 
Ve '- Oc, , r '( ,q IV 0 S, II P PJIl.J<.; D I <; TA VC .. IS:. 

W I I- t- f\.) 0 \..A.J ~ a.. """F'" 0 U ~ "Q • 

. . . .. . .. . -.. .. ·0.· ..... .. '. . .. ... '. . ... • '. : .. ·0 •• 

A 

u -

. , 
, , 

, 

EQvATJrV~ U .fu KE-

FI- Sl.. 
t-

o:. ffYl 'L. ..fJ:2-
'2,... 2-

<. 

, .. 

139 
ISC Fora toeo (oct 70) kASA·JSC 

I 
i 
'1 
~ 

a 

/ 

" 

! 

J 

I 

! 
/ 



" 
" 

-' _/' .. . ,; 
:. ,." 

/. ,~ 

/ : 
, j 

.' / ' 

. < / • 

~.! I! 

:. /. 

' .. '" .... 'r " 
(' 

: .. ("' " 

, 
.. ---\,":'-

/ 

JJ 
" ~~ 

/ I­
I 

'1 
-----'/" (' 
. . .'_ t 

" ~ . 

DEf. 

.' . 

/ . ',t-' 
./ Ii' t. 

STflESS A~ALVSIS n~POBT 
lnUt ' 

."/ ; /-' I· 
• ' • .' I I 

,~~ 0. e, -
8'- 17- ?z.. L L>.;;;';w. 

.. " ...... 

2) '2.. -

II FfEvJ VALVES 

,'c' o 0' . . , ' " " 
'c , 

~1.. , FI 

....... ".' . 

.5 

1·0 

1.5 
2,0 

.. .. . ' ... 

At< E:.. --r7'lScJl.-Jt)Tf2:.D:. 

' . (, .. 
.. V . 

.u:1.. .) FT/Sf2:.c. 

.. ............. . . ...... ' 

I .. A 50s cJ ME. <5 Ie 0 /.It ~ TP-IC ~<:'A '- I:;.. F~~ IDg 

-= 2,0 

2... 4 '5 os U (-1 E -=t? OO!VI -:::, ,1'2 ~ S S C) t= SPAC. e- I 

S-rn11oJ,,) r2 1\11 S c,c ~.F- ~ A- M tz... ,4-5 S 'I '-' IT L E: R IY1 S _ '1 
3. ])E. T£ <2, • .., IV€:' 01,/ e.,e A '-l.. "'5ye I tJG, 1 

RATE.. Dr- ~OOM. :rOII.J/~ ,qNO 1~7t.?I?T/E'tJSS" I 

J./ •. -Of:! T e 'IV7/1V~ £,Xc, C)RS/~J./ VE.L Ie. /,.y r 

BASED ()N d',/f.'/f/..-'£ S'/Z/i3'vRt!:.. I 
,5. D& r€I2MhV£ r£712/1 TRUSS MGff/eE~ 

LO/1 D.5 /" C/,I£~f Fdl2 STREiv4 n-l ~ STAB/,- I/y. 1 
Ise Foro 10ea (Oct 70) NASA·JSC 

L 

.-

" 
~ ; 

;' 

I 
! 

/ 

i 
, I 



, ,( .. 

I ,f' ; 

't , t JI I ,,' . 
- '" . 

'. ! , . ! . . , 
, .. 

/ " 

; V ! I 

I 
.f 

i .' 
-{ 

, . 
./ 

! If ----------------,._-_._- ._--,. 

.I 
I /' 

/~ 

I 
I 

,:.;' . 
i I 
I," . 

. , 

/ 

J 

~SA • lfm"a O. J~aet. S,OI' Cc~t., 

$Tn~SS nnALiSIS nepOOi 
~~~--------,------~,~T~ll~~.-,------------------~~~~·,.~~~ .. I~~~.----------~ 

OEF • 

. " ... 

F()~ THE SPAcE .s7~7/01V c R/4s" 

BIGJ tJSE A SC/JL. E. 

L. Ii. /oJ &, r;.l F9 AI .D A-
FtJP-e. G. ' 

d.J /rile /, ~.s 

r~~ rt1),q t!J,c 

F4 tC. it'B tJl= 

I<t;:r = ?·8? IDS (2) (-'I) 

1"\ ,. n 

TWIG€'" AS 

2 .. (J o,v' 
¥. () () A/ 

- 6 3 It) S ~r-16/ R;?D 

........ '. , ..... ' .. '. '.' ';;: ... 756 ./!).£. /A/~ 16/RAO . . " ... 

As 

-=:.. 70g IIS-Ih/RAD' 
- 59 r=r-Ih /p-AP J. 

14 , 
~IS~C-=F-or..l\.e ~10~BII~(':"'OC-:-t ":":11)~) --------~--------------'NASA.JSC 

.j ,. 
~ 

! 



. , 
/ 

/ 
"/ /, 

! 

", ! . 

.' .... 

,0_ • 

, . 

, 
' ;, 
.! • 

D 

1)::. '3D l'-l' 
. " . 

.' ; 000 0 0 , 0 <to 0 ~ 0, 0 '. /0 0 0 t t.J 0 • 0 0 o· 0 • 0 • 0 

. . , 

Af.Je 

ItC fOrg-;OOc (Oct 16) 

r -

=-

£."I 

Eo = 20 ID b Ib/uJ1.. 

rr -01 t" rr :3 
~O (./0) 

:.. 

B G' 

lOt.. 0 I~ 
3 

::.. (tobo) '2D 10' 

= 2 .. , ID 
b 16-, ~?.. 

'. 

142 

"--.-'.,--,-"'.' ----,'-,-'-r 
I 

'0 

.... . '. ; .. . ", 

I' 
\ 

. 
I il ' ... 

HAS'" .J5C 



.... t . " 

_-----=.--IftlL-=:II'. ~_"',=~~.,..;..=_~,_::--~_._:_:_:"'-: .. : ~' ___ .-~. ____ ::.=:-. ~:--. ~--.~~.-_._.:_-~ 
J 

.' 

.. . . " .. .. . 

OEF. 

.... . . " . 

PAS! r,:,. tlF -

, 

g. 2 • 5'" /. 1_, ...:;..1" ____ T. __ '6:_T;...;.,;c?,.;.;. • .;...;/9_-.;.-.1 ....;:~ ..... I/-=S..;:;:..s __ 

---;;::> L- A Tti. C; T I 1== r= I\J c:: 'S S 

A.5 . ~ I~ 0 lJ,J N 1 t.J 1= , ~3 • '2.. -7 ~ e. T ~ T tz It -

Tf2. lJ ~ ~ I S fA A 1) f£. F' e 0 t.A E.d) \J ee. '- fa '- E rA ~ ""TS . .. 
T,..\ Eo 0 V t:::.e A L.\,. -p '- ~\re.- "S -n F F t\) a ~s I S 

. .... ' .... 

U :: 

E. c. ': tvl 0 0 u L U S 0 F rG LA"? TJ (.: "'( 0 f 

C.OL.vM~ fV1~Mat.:::.e ~ 

c. eo c:.s ~ e Co T 10 AJA L. A Q. ~ A 

L t!. ....,e"", "F- M t!. M a '4 e '$ 

IC~ =- 28 10" P ~ I 
~ -:. 10.4/ r-. -::: /2..5" 

..... ...... ;i:~.:: ··.·~~·s7l·· .. 
d(.. ;;: 2.0 II 

1-..1 
, .' .. ' 

:.. 7T (2,0) ~ 02.~) -= .1 S7 /4J"l-

143 
JSC fora 10eS (oct 1D) AASA'JSC 

',.:7 



'. 

.. 

~ 

~ 

FIg, 3.2-7. OrthographIc Vleu of Tetra-tru ••• 

,.._- ... '-.. 
- ...... -.". -'. 

) 

, 
.' 

IS / 
;' 

-._._------------"--'---' 

, 
i 
, 

.I 
d 

.1 

-I" • 

1 
! 
,I 
1 
i 



/ 

I, 
'\ 

(' 

I ..... 

'j, 

" ..... 

-.,... 

i 

r.er. 

. . . . 

'AI! m. 0' -
STOES! AnAlVSIS n~PDQT ' 

A s ~ u t\.{ fi... ~ A-,. 1"'4 ~ T e. Te,q TQ V '1 S t 'l A ~ 

'~~TR.C)f\Ic.. "'?~ATt!... t.ALC-\JLA"Tttt. ;-J.IG.., 

E. G IJ I \I AL.. ~ t..J'- til 0 l;) t.H .. u.s () r: e .. "S T1 e I T' Y. 

.......... " .... 

~ E 1- ~ 'i I 0 fJ "S N ,~ 0 P -,:> l. A T~ S 'T1 f: F tV l:: S ~ 

f\A 00 u llJ S ~...,o IN ,!.~ auE.. $ So, h t'S 

o ':. _E._h~~_~ 
12. (I-~"') 

E:: J '7-. '0 

.. .. . .. ",," ...... 

~l 

12 (lto<1.a-) I()~ 
... ' "f( b~: "i~'" 

145 

P~I . , .. 

{ ,-

ISC Fora 10CS (Ocl 1Q) 
... 
tJ 

.-----,~ 
en.t==z '. ...-.~ 



" .~-

-------.. 

/' 

". i '" 
.' '," 

'Alii ~. GF -
.PWM'O.D at e ::r W r:. SS E:.l-~#.I a!1A· L,d •• D •• 1& .... e,ae. Celt .. 

o~~~~v STnESS ANALYSIS ~EPOnT 
K\~ TIYU . 

~- 25"- ~z. 

[lEV. 

... I· 

3.2,3././.'1 (C(JrdT.l 

'1 
4 

5.S. 

'.' 0 

ORIGINAL PAGE IS 
OF. POOR QUALITY 

Mj 

f 
. 

.' 

( 7f:1"2.r;') 
FGti: E 

S.5. 

....... ' .. " ..... . '. ..' .. 

r-' 

, 

MA-

x lL 
t ":.. <6.51' 

, ., ' .. ' .) 

l b 2.., I '" 

A ~ ~ U M £.. -r 1+ A- T 11-1 e. A ~ 0 V t!. I '5 0 ~ 0 P I Co t=> (. A- 'IE.. 

A 0 c:. e V A Tal.. yo::;, M tJ L. (\ -rt:. S iN t!. "-tl Tla AI(? v S S . 

'/--!\r. "\oP At\J'P "BO""'Or~" E.P6f2S AQ t2. ~1--

,11 ~ H ~ l) ,0 T14- E. e.o t2.N E. (2. Moo U L- V s· A-fV C 
. i 

SlfY1PLE" ~UPP()t2-\~ AGl.r-, f\S~UI'>1~'D_ ! 
T I", ~ 1- 0 A 0 I 'S Pr P P L. I E. D ,0 D N e.. D ~ /14 e:.. ; 
"FREe.. ~'O~E..S MIDSP,q1\j (X-::7 o j'j-:6"2.5,) I 

. I 

""Fo e. ~ ~ t 14 D ~ TN c M () r'Y\ IC. ~ T~) M x I M,{,. J 
/l-l-t:. :s 'P (2../ aJ G, ~A"-f.l: J I tV - ,lair:? r'\1),. J 1$ "'jO 'B e... 
~ £. T ~ Rf-'i' o rz.. 0, 

146 
lie Fora 10e8 (Oct 78) 

, 
J 
! 

I 
j • 

. , 
i 

~: . .:--?:~~. ~,.~ :~."~. - .. -~ 
-.-.------.. -.~ ._--_._-------_ .... -.- ... -.-



¥ ... J11 .. 

.~-.' 

/ 

,<,,-
.. " ......... " 

, , 

t· ' 

. .;".~' 

'.' 

'AD' AIUD fit 
~ :r WESSG.LS#I 'AU t:O. OF 

i\l{~WW -
STn~ss A~ALVSIS nEPonT 

Tn~ . , .. ~.t~. 

3.2. "$. 1.1 ... 1./ (c.~tJr) 

-r ,J I;:: ? l.. ,.,. ;-tZ 

I"; F I 63.2-7. 
J9 eE. SN" /AlAi 

WA ~ "'c9 I;) tz I... t£= 0 /i ~ S"//d wlI.! 
-r II a:. 7) G. t=L let!:. rlZ D S 1'1'; PE.s 

I AI t:'/~ IJ t21Z.s 3.2- 0' AlVo 3.2-9. 

,I-&E: VI!\LUES oF- 'TNt:. 

'S'Pf2tvC, ?-A,.a4 AtC.E: 

c r. ' , 

1-< Gl '( - \45 10° -
1<9)1... :: ~QO 10' 

'. 

... .. ...... ....... " .... e ... "" .. .. .. .. .. .. 

147 

'c . , C' 

1t.J-lb/RAD 

t t.J .. ,blp-A 0 

. . . . . . ... " 

~ ISC forQ 1060 (Oct 10) 

I . 
I, 

, . 



. t: 

.Jl~ 

". -r"3/ _.. . _ . _ . 

',~ 

I 
I 

'-:--. , 
'. 

'. 

~4'~~~~~~-?~~~~~~~~~~~~~I~--~~~.~ 
'V 

55,. 

x 

~LAT PLATE Q 

Isotrnnic finite Fl~~ent ~c1cl o~ Tetra-truss. 
----"- -

, \ 

-- " 

, " 

", . , 
--- .. 

.... 

", 

.' 



" 

" 

, ( ~ 

SPEC 
3.: 

>. 
! ~ .. :r, 
~ 

:.~. 

".~ 

·',i. , . 
'. 

'. 

~LAT'::>LA-:-E 

Ff~. 3.2 -9(.). Deflected 

>~ 

Shape 

: 

~ \ . 
I 
\ 

Under 

, .'t, '. I 

" 

" 

1::::=2/1/: 

-- .. -: 

..... "., 
", 

" 

-~, 

Q SCALE 
2&1 

Ply load, 

, 
\ ". \ 

) \ : ~.--:, .. ' 



·f 

VI 
o 

- ~, 

'. .: . ' -, 

~x ~T CENTER OF FREE EOGE 

5.S. 

. 
S:>c:C t:'L.AT "PLI\TE 
3.1 

_1--. 

\ . 
I 

\ I 

I'l \ 

ID=:/l/l 

Q 
SCALE 

\ 
\. 

~ 

"~. -"..;;-.:- ..1. 

.. --': 

\ 
\ 

, 
", 

.. 



-" r -:;;:;", "~'. 
: I 

"j' 
~. / 

j' 
;. 
.... :-:- -; . 

. --~- ..... 

" 
./ 

" 

/ 
I 

' .. _f .,.: • " " 

I 
/ 

,/ 

... ,'. ··Ie 

/ -
--j , 

DEf. 

.:. .... . 

r· 

. . . . ' .... 

TJ.J€ 

/. 0/9 f) 

--

ISC Fora 106D (Oct 18) 

. '/ 

'"I m. 0' -
STnES~ A"ALV~IS HE paRT ~r:o. 

'T!'fPt . ~,rw. 

L, ~ Jf 5' 

...... 
~5J I 

.... §.'.J ....... =-L 
~~ 

To rXll-

1= IS 

15 1 

k'e-:f 

. .' .. ' 

F L3 
+ 

3 IE I, 

-
.. , ". 

" 

.0 

, 

.' . , 

/ 
I 

, 

I 



,<------
_..-.' 

/ 

~-

/ ,,,< 
/' I 

.- , :.f .-
,,' 

I~ 
, , 

ij' , , 
7~ , /' j' 

I 

/ 

.- ~. . . 

/: 
l I 

l 
I ;, 

, ' ! 

I"" 
j 

I 

-: ." 

I '; 
" ' 
,~~ " .. 

I '. J 
, I " , 

I" 
". /-;, i \/' ' \ /1 ,./ " 

I ;'1 . , .. 
','. // " ,I, 
",~I 1 

.A£! L~. I' -
STOESS AMALVSIS REPonT 

YI'j~ , 

GfF. 

· L , :. ':'-1/ CJ I'" 
L 2,.'::' ~ lit) I~ 

E r,: 2.12. I () 16 .' j, - IA.! z. • 

1-(0 -:: I¥~ /,,~ 1A/'"/J/Y.:t4 

/I,:: 75'6 It> ~ I y, 16/ rt:d.. 

J.I ~:. 7(,1" 'If) r /IV .',V ~~J , 

'L 
~ 4-01.. 13 ?l>.3 ~ (:rIfO .,. cg "'" 0) + - ::. . T 70 g IO~os 3 (2,,)?:) 10 It' P ''+5 IOU 

L 
t- (5 .ytl 'f ?'1o) - ,013 t- ,010 r .041 

7 S"<b 10 S-

.' ' ., " .. .. - - .. . . ' .. . ' . . ,- . , . +- ,., 6, ~ s-: , ' • °
0 
•• 

"=" .. b ~q J..- /Ib 

- ~ Ib t-O~ LoA,,!)} F, o F 22,..0 

I 
~~~~ __ ~~ ____________ ~1~5~2 _______________________________________ J 
JSC FUll 10GB (Cot 111) MSA-J" 

/' 
I " 

',-

, , 

" 

,I 

.r 

J 
I 

7 



" , , . 
, ! 

'; , . 
/' 

, 
'. I ' 

" 

, " 

" 

, . ~ . 

' .. /' r 
~~ 

/ . !/, 
: :, 

. -, ..... 

, , 

/. 

,/ 

/ 
/ 

~- ,: ." .' 
I" ' 

'. i 

/ 

. . .. -

",." ~I 

,.' '. 

'/ 

GEF. 

... 

, , 
I, 
" 

. ~ . 

,': #' ./ 

~A - lradG. D. '~nICD SpI.I Ceal., PAGI JS3. 'If -
, L ll~~. 

Mtlkl !\iUrA 

As G,IVTiN II.J ~e.LIIO'" 3.;?'.~_1) "7"N-~ 

T,P D~F'-Ec:.-_T'OtJJ LoAD, rIlAC;C; AAJ D 

VE.L o~ ITY AR~ RE:L. A.,-t:: D As 
~ 0 L. L.. I,) we;: 

.o;z. -

'1)11 'Z- :. I ~ 7 J 0 0 c) J b 
.... '. '-. " .. .: . >~ 2.: . T-.... \. ~. to· nJ .' . .. . . -- .. '.' .; .. , 

- ,'2.,+q Fr/SE.(' 

T t..t I S IV( &:. A IJ S i>-I A -r- TJ..H.:: 'S A M rC. e t2.. , T t: I?. \ A-

C A rJ 8 ~ tJ ~ r.r: D f:- (.) R. . TN- e. SPr.c.6' 57-AT/ON A~ 

FoR -rHG' S HurrL E Rms I i, t: • .J 

<:::. I' '2. 

<: 2 
153 

F TIs F ~ 

Ise fora lU08 (Oct 76) NASA·JSC , 

,~----..,."-"",,,----,----

- ... 

i -
" 
( 

/ 

;.; 
" 



. .' .I 

. ,'j. 
, .. 

,t, 

"I 

/ 
'.' C 

. . . - " . 

i~!' 
. ".' " 

I' ' . {." 

.' 

I ." 

/.-

, c: 

i 
,/~' ,I 

j. 

.-
/' ~ .... ,. , r . . ' , 

(, 
I • I )··· 

I' I .. J , . 

. "~I Ul. _ 0' 

STHESS A~ALVSIS nEPORT 

. ~ ..... t!2!2Z %5 U , 

OfF. 
ME. M \3 e R. L oAos 

.. ,: .' '. ". ~"'" ... ' " ......... ;'" .... . 
2: rV1 A-: 0 = 2. 2." (i It-t +- '-/-.2. r;) - 12, g. ~ 

.' . 

12, -

e, - FL, ~ "3 o~~ - '2. L 0 

'C 2.~tnfJ,lk 

I 
I 

L-I-~ __ 1~54 _. _-------::-:-::-J 
J~C F~ra 1088 (Oct 75) HA~A·JSr 

, I 

, , . 

. : 

I 
I 
I" _' 
I 

I 

! ' 

" 



" / 
" ./'/ ! ! '5' I. " ,- ( 

"f, 
j " : 

I' t 
! , ... ! • '/ ' 

,II , : I 
.. 

I"R£I'ARm QY 

c,:r tV \r: SS~ L ~~J 
l:l1' STHESS A~ALVSIS n~POnT 

TI'iLf! ' 

. ': 
,-' ~'; 

{,. nEF. 
" -, 7,0", ti 

\ .. 
3. 2. 3. J. 3' 

:1 
rj 

, . i4 
- 'I , q 

fl • 

. : ..... 

• r il 
!I 
'f , 
\ 

. I 

i . " 
t 

" ; 

. . ~ 
:' i 

I 

; .. . 

i 
I 
I 

I , 
".J 

•• " 0,, ., •• .' .. ' 
'/~'~ Su"M E: "TNA';-' 1l'f a.' . '1. 0 A 0 

,N Tt> "f\V 0 oN (JO IE. --~Ot AJ IS 

7N E. I '-J 0, v r 1/ v f'rL M ~ M'3 ~ ~ 

FOR Ie.XAMPI...C) Ie,) 

--
':"2 

G6S 30° • 

3 "g-6 /2.. 

'~ i 1 5 

'. l ~ ISC Fora 1066 (Oct 10) ,._ c'. t _------________ ~ ___ ... 
, I. 

\ \ . ! ; 

,tell t:!. _ U 

~tlO. 

c t4 J?. c. I" 
"Fog 

"13 u C. tt!.1, I tJ C:) 

R, ~ Eo IS . ";:'eD 

AS ~...,JouJloJ .. 

L b~ 0 (A ,..-0 C. 

Jb 

.' , 
! 

NASA·JSC 

. 



I 
! 

! 

. ' .... , 

I. 

- . 
, .. - ~ . - - - "-. 

- - .-.-. ---- ------~-----.-.- ...... ---i~~~~·--~~~:.~~; '''''.''.' 
~ <, ~ 

. .-:... ~ 

.j 
i:ii;}J>eU);Wr=.. sst=. L s~, ~ • Lr.tla g. '~oeD e~e" 04311' . 'AC: CI. eI' --,. 

I 

;.;:.-;~w [if 
gVaE~S MlALV&1S DEPORT I:.~'T flO. 

: • 
I 

, 
;. 

.. 
~~l~ TIYpi , , I::;;IJ~,r.J. - , 

~ 

, 
:-j 

;'\ 
r! 
;"j 

t I ,. 

~ - 2t;'":- ~ G- ., 
--,rj ,. L ~":"l;". 

(l~~. 

~. 2. 3 .. J .. "5 ( Co ej 'L , , 
" 

.. " 
'. 

r: . . , . 
'. , .' t A 
l 
; 

I. 

i j 
f: ... 

A r c 

-C J-PAC. LIl PAC. 
L :: 12.Y-.Cf 't.l 

" c .. 0 c· 
0 OJ 0 ~ .. ,. 

f 

'0 
f 

I 
I 

.. r t 

\ 
i 

.......... 

. ;t 

~I~ t ,. 
-f-- 0 -.. ...... ' .. . ' . ; . .. .. . '. . ' . , , . . . .. . . .- - .. .. . . 

cs EL,TI 0 rJ A·A-

, , 

,14- ~ ~e I rl (.. A L E lJL G..(2. "& U (.. I.! LI r-J~ LDA, t:> 

1'5 " 
., . /" " .-

Pc.,a = 
:rrt. aX 

l-l. 

c· : .. 
c 

, . 

" 

.-
15 () 

.. 
','-

'-. 
-.... :: ..... 

I 

J 
l<ASA·JSC 

, 



,/ 

--i .. . '. . ~. 

( I 

r:.:l·· 
I ~ ~ 

r .. r: 
r ~ 1 
V\! 
1'1 

·U 
" 
I 
~, 

, I 

~;, 

, 
,i 

. 
I . i 
I 

" 
~ ~ 

. '; 
// ; 
, I 
I .' 

. . . . '" . " . ~ '. '.': 

:1 
I 

___ J 
-'- -~ 

.' " . . . .. ..... . 

SiOESS AHALVSIS nEPO~T 
TI'IU. 

VALUE.S 

E = '2..8 IO~ P~I 

1:):.. '2.. ' () I #..J 

L = t2S" 1t.J 

t :. , 0'5:' /IJ 

PAC! f!9. ., -

_ .111~lI 

1T 1. 2 0 I () 6(. J I) 

I Z tf.tf 1. 

........ ' 'O ••• ' •••• 

::: I .. S 

- J 

.. ' . 

--

~~~ ____ ( __ ~15~7 __ " ___________ J 
ISC forD Ices (O't 13) 



.--

,J II' 

3.2.4 Manipulator operations 

When the Space Station is servicing OTV vehicles, or when 

the Shuttle is coming in or going out of the Space Station, or \.,.hen 

equipment is stowed or rearranged, many manipulator operations will be 

necessary. ,Objects o~,~arious sizes and ~eights will have to be moved 

from one location to another to perform the various tasks. Different 

types of basic operations are described in the following sections. 

3.2.4.1 OTV Handling 

A concept for handling OTV and component parts is shown 

,DO .in figure 3.2-10. In these operations, heavy mass Items such as fuel 

tanks will have to be moved about and assembled to one another. These 

oper~tions can be greatly facllated by a manned manipulator since some 

EVA may be necessary. The manned capsule provides a station from 

which local EVA Is (,erformed. 

3.2.4.2 Moving Base of Manned Manipulators 

, "'~,' ,. '".,.,' pe,p~~d.i~~ .o,n" ~h,c, ~~~k,', th~ ~~~ipulators ma~ ~e,ed th.e"" 

capability of reaching any object on the Space Station configuration, 

inside or outside. However, if two manipulators are used, ~ot all 

~reas are accessible. If would be desirable if one or both manipu-

. latora could change their base location. There are practical problems 

associated with this desired capability. The main problem is the 

umbilical power, feed and cooling lines that would have to be 

disconnected and reconnected. Unless there is a self contained power 
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Fig. 3.2-10. Ory (Orbital Transfer Vehicle) Handling. 
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supply, one manipulator could not relocate itself since it would be 

inactive as soon as the umbilical is disconnected. The only practical 

way is for one manipulator to relocate the other one and even that 

would be hard to achieve because of the umbilical, which would neod an 

automatic disconnect and reconnect feature\ 

, , ' 

3.2.4.3 Inside and Outside Conversion 

With the manipulator working from the base located 

midspan on the edge of the Tetratruss, it would be highly ciesirablc 

for the manipulator to operate on either side of tho tetratruss. 'I'his 

can be achieved by a turntable rotation feature at the base as shown 

in figure 3.2.11. In effect, this permits the m.lnipulator to reach 

twice as much area as one designed to work on one side only. 

3.2.4.4 Shuttle Docking 

One of the main functions of the manipulators is to. 

dock with the Shuttle for berthing and station keeping and to extract 

payloads from its payload bay. In figure 3.2-12 is shown a docking 

" ',operation .where 'the-ot"b~ter 'is' kt!pt some' 'd'istance away from the's'pa'ce 

Station. In this case, the other manipulator can be used for 

extracting a p<1yload. The disadvantage of this is the difficulty oJ: 

crew transfer. Conceivably, after the payload is extracted, the 

second mani pulator can grapple some fixed part of tilt! Orb! ter and ll:t~ 

first manipulator can be used for crew transfer. In another conCt'pt, 

as shown in figure 3.2-13, the Shuttle can be docked to some ~alt of 
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Fig 3.2-11a. Inside and Outside Conversion, Steps 1 and 2. 
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the Space Station and one of the manipulators can be used for 

extractin9 the payload. This too would hcve certain disadvantages 

such as the requirement for additional dockin9 ports on the station 

modules • 
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Stowage of the Manipulator 

Our primary concern is how the manipulators can be stowed 

in the payload and transported to the Space Station. It is also 

highly desired that both manipulators be taken up in one flight. One 

concept for stowing the manipulators is shown in figure 3.2-14. 

Initially 'during 5p'ace' Station buildup, th~ manipulators can be flown 

up and the Shuttle RMS can be used for extracting them from the 

payload bay and Inst31ling them on their respective bases. Note that 

the turntable base is not packaged with the manipulators and would 

have to be flown prior to this flight and installed into place. 
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Conclusion 
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r 

A manipulator system is conceived that will be used for 

I handling a large variety of equipment, modules, or the Orbiter~ This 

t manipulator can be either remotely operated or manned. It is based on 

the current Orbiter RMS design and is sca~ed up to handle large masses 

such as the Orbiter. For this large mass, it is feasible to design 

this Space Station manipulator end to have an excursion velocity of 

0.20 ft/sec and a stopping distance of less than two feet with minimal 

structural beef-up near the base attach point. For smaller masses, 

the excursion velocity can be greater. It is also feasible to package 

two manipulator systems, without their bases, in the payload bay 

assuming the full length can be utilized • 
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3.3 Holddown Attachments 

3.3.1 Introduction 

. ,SlJacc Station potential uses include maintenance C 

and servicing of a large variety of Orbital Transfer Vehicles 

(OTV), satellites and the Shuttle Orbiter. The servicing tasks are 

expected to be extensive, involving nurn~rous components and 

processes. The typical servicing activities will include 

a. propellant and oxidizer loading (transfer) 

b. Checkout and refurbishment of OTV and satellites 

c. Orbiter payload un~oading and loading 

d. Berthing and stowing of items on Space Station 

e. Assembly of OTV and uatellites from subunits 

f. Launch and deployment of OTV and satellites 

The performance of these tasks will involve the 

attachment and securing of a diverse variety of hardware to the 

Space Station. For the station concept of this study, the majori~y 

"0'£ tire' i fe'ms' (rre"'a'ti:acn~'i 't'o' 'the' 'e~'pa~cia'ble" t'ru's'ses th~t' ~~~~r'i~~ 

the three sides of the station. The pro~osed design of the trusses 

is a tetrahedral deployable design. The trusses are made of 

graphite/epoxy tubular members ,~ith special fittings at the nodal 

points. The attachment of the various items to the trusses is 

. made at the nodal points except for the attachment of low mass 

items, such as cable and tubing runs, \'Ihich could be attached 

anywhere on the truss members. 
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The imposed londs on the holddown attachmonts are 

relatively low, in that ·the accelerations of attached CTV, 

satellites, and other items, because of station manucvers, are 

minimal when compared to ascent and d~scent loading for typical 

orbiter missions. 

The truss nodal points have the tentative requirement 

to resist a IOOO-lbs. normal load and two 500-1bs. orthagonal shear 

loads with respect to the plane of the truss. The holddown 

attachments will have the same tenative loading criteria as the 

truss nodal points, i.e., to rosist a IOOO-lbs. normal load and two 

SOO-lbs. orthagonal shear loads with respect to the plene of the 

truss. 

The proposed holddown attachments will perform the 

following 

a. Attachment of CTV to station '. . .... , . ,..... . .......... . . .' . 
b. Attachment of Orbiter to station 

c. Attachment of ancill iary equipment to station 

L propellant/oxidizer tanks 

2. Gas storage tanks 

3. Cable runs 

4. Tubing runs 

d. Attachment of satellites to station 

, 
171 
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The scope of this section Includes the various holddown 

attachments that were-considered with lJreliminary d~si9n concelJts, 

~nalyses, and sizing Information. 
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3.3.2. ~ttachment Interfaces 

3.3.2.1 Attachment at Truss Nodal Points 

The holddown attachments to the Tetratiuss 

system will ~e interfaced primarily at the nodal fJoint~ utilizing 

the truss fittings that form the interconnection between truss 

diagonals. The preliminary concept selected for the truss fittings 

utilizes a nonmetallic, molded deGign. The diagonals are attached' 

to the periphery of the fitting by ~eans of bolt through inte9ral 

lugs that a re molded wi th tile fi ttings. In tbe center of the 

fitting, there is an un~bstructed boss that may be utilized as an 

attach point for holddown devices. A titanium or aluruilluhl insert 

would be installed in the center of the boss ilt the tilll~ of 

r:lanufacture. The insert would have a bole (1/4" diameter to 3/8" ._ 0.... _ ..... _ .. 
• ••••• •• e • ••• - . 0 ••• 

diameter) for holddown device attach pins. The truss fittIngs and 

the holddown device fitting~ are fastened to eacli other wilh f::.VA 

compatible quick-release pins. Figure 3.3-1 de~icts the att~chment 

configuration. 

-,-

3.3.2.2 Attachment to Truss DiagonalS 

The attachment of low mass miscell~neous 

items,such as cable and tubing run3, does not have to be restr[~ted 

. '-

. (\ 
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to the truss nodal points. These items may be connected to the 

tetratruss diagonals at any arbitrary location due to the lciw loads 

that they induce into the truss members. 

The cable or .tubing trays 'are !astened to the truss 

. member wi ttr a push on .tYlJe slJring or latch mechanism that will be 

attached by EVA. Figure 3.3-2 illustrates two alternate attachment 

concepts. 

3.3.3 OTV Holddown Attachments 

Since OTV are in the preliminary concept stage, the[~ 

are no firm requirements and configuration definitions. Various 

groups within government and industry are performing tradeoff 

studies to arrive at OTV requirements. Because of tilt! lack of 

indefinite OTV definition~ the re4uircments for the tie-downs were 

derived from Shuttle payload restrictions. The Shuttle 

capabilities are fixed, thus, the mass and size characteristics for 

OTV subuni ts will not exceed Orbi ter limi ts when they a rri ve at 

. . ' ... ' t'H~ .. S.ta.t.j,o.n •.. Onprbi.t. ass~IUbly 'and propellant and oxdi:.!er weIght 

could increase the final -launch" weight and length of an OTV 

conf:iderably. 

All OTV stages, payloads and associated elluiplHellt 

will be transported to orbjt in the orbit~r payload bay. It i~ 

therefore reasonable to expect that all OTV components will havf 

trunnion attachments for payload bay stowage, grapple rixtur~b l • 
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RMS handling, and possibly attachment devices for interfacing to 

currently contemplated handling mechanisms such as Handling and 

Positioning Aid (HPA) and Payload Installation and Deployment 

Actuator (PIDAl. The onorbit holddown attachments should be 

designed to utilize fixtu:es on OTV that will serve other functions 

as well, thus, deleting the need for s~~ciali~ed fixtures dedicated 

only for onorbit stowage. 

The holddown attachments should meet the following 

requirements 

a. Stowage and transportation of holddown attachment 

to orbit in orbiter payload bay. 

b. Deployment and securing of holddown attachment by 

station manipulator on EVA. 

c. Stowage and release of OTV with remotely actuated 

latching mechanisms. 

d. Ability to place and secure at any location on 

truss to meet various OTV servicing requirements. This is also a 

.. .' .- " .... " . 

3.3.3.1 OTV Trunnion Attach with Tripods 

The Orbiter transported OTV will most likely use u 

5 point trunnion attach method in the payload bay. This would filCH· 

the use of four longeron trunnions and one keel trunnion. The 

10ngeron trunnions could be utilized to secure the OTV to the 

letratruss on the Space Station. For this configuration, at.; t:d.:-h 
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longeron trunnion there is a tripod support (see figure 3.3-3). 

The tripod members are graphite/epoxy tubular members. The 

attachment of the tripods to the truss nodal points arc made with 

~uick release pins as shown in section 3.3.2.1 (see figure 3.3-1). 

Tne attachment of the OTV to the tripod can be accomplished by 

"means of capture ~atches that would. mate autoruatically when an eTV 

trunnion is berthed to them. The trunnion latches have a remotely 

actuated release mechanism that is operated by means of an 

electrical solenoid or motor. The lightweight longeron fitting 

might be utilized for this application." 

The preliminary sizing for the tripod members is based 

on a calculated 5000 lbs. normal load to the plane of the truss per 

tripod, This was obtained assuming that the OTV impact is taken by 

two tripods. For this load, the loads in the tripod members are in 

the range of 2000 to 2500 lbs. The tripod member lengths are 8 to 

12-ft. This results in a member size similar to the truss 

diagonals; i.e., a graphite/epoxy tube of about 2" diameter with 

.' .. '~ab'out .• o 49-w.a·11 .thickness.· . The .react.ionsnorntal to the ·truss ·iI.t· 

the truss nodal points range from 1300 to 2300 Ibs. Thus, the 

quick release pins could be from 3/8 to 1/2 diameter and be marc 

than adequate from the strength stand point. It is posliible that 

EVA requirements may very well dictate a larger pin diameter for 

the quick release pins. 

The layout of the members for the Tetratruss is a 
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uniform pattern of equilateral triangles with a 10.4-ft. nodal 

dimension. Figure 3.3-4 shows a plan view of the truss, with an 

outline of an OTV and four tripods. For the depicted configuration 

the trunnion spacing on the u'rv would have to be 18.04 ft. to 

permit the use of similar tri~ods. If the trunnion spacing is 

something other than multiples of 9.02 ft, then the tripods would 

be different for forward 'and aft trunnions of the OTV. 

3.3.2 Handling Fixture Attach 

All expected OTV designs will incorporate some form 

of permanent handling fixtures as part of the OTV structure. These 

may be grapple fixtures for handling by RMS, PIDA fixtures for 

deployment by PIDA, or passive HPA fixtures for manipulation by 

HPA. 

It is conceivable that these fixtures ma~ be utilize~ 

for on-orbit stowage and retention of v~rious OTV ~ompcnents. In 

order to satisfy the requirement that all significant l.oaos be 

.,'. al?pl~e~. t:o .. tP~ .te,t.q.t.t;rus9 at .. th,e.'f!oda-l, [.oints, the u,se:' of PJ:lJb-t-:Ph' . .. .. . 

type devices reyui.res the employment of a low trilJod that would 

serve as a load path to the truss nodal fittings. figure 3.3-5 

depicts a possible configuration for a PIDA/tripod ~ttachment 

device. Generically this concept would be the same regardless of 

the type of fixture that was used (prDA, HPA , etc). They all share 

the inherent drawbacks that 

a. The mass of the OTV is cantilevered from the plan~ 

of the truss and the lateral loads are reGisted only by the momt:n't. 
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capability of the PIDA/HPA type fixture. 

b. The loads from the OTV are transferred into fewer 

nodal points of the tetratruss than with the trunnion attach 

method. 

c. The PIDA/HPA ty~e mechouisn.s are inherently 

complex and require f~rther devclopment to demonstrate long term 

reliability when exposed to onorbit environments. 

'l'he use of, this type of attachment for OTV berthing, t'o 

the s~ace station is not recommended due to the drawbacKs cited 

hercin. 

It is conceivable that later designs and inventions 

may make this type of attachments more desirable; however, further 

consideration is deferred at this time. 

3.3.3.3 OTV'Berthing Fixture Attach 

On some previous concepts, various OTV stages and 

' ....... , :l'ayl:oad·s· ar-e· depic'ted '\:"'i'trf ·inf.erstc1gc· att.achment devices that 
.' . 

strongly resemble Orbi tertyp'e 'docldng units. In those 

configurations OTV are shown be~thing to the Space Station, to 

payloads, and to other stages by means of the docking unit. 

The use of such a concept is ~ery inefficient from tn~' 

structural point of view. The diametcr of the docking unit is 

considerably smaller than the diameter of the OTV. Thus, any 

bending moments imposed on the docking unit will result in higrl 
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strength requirements which means more weight. If those bendiug 

moments were taken out thru some ski rt .lttach scheme along the 

periphery of the OTV thpn considerable weight savings could result. 

The dockinrJ units are also yuitc com!Jlex mechanically, 
. " 

which might result in long term maintenance problems. 

It would lie a desirable reljuirenlent to minimize the. 

number of docking units for the space station and O'fV's. The 

benefits of such action would be weight and cost savings, as well 

as increased life for the Space Station. 

For the reasons cited herein Orbiter-type berthing ~nd 

docking units are not recommended for OTV propulsion stages or 

unmanned payloads~ 

3.3.4 Orbiter Berthing to Station 

In the course of routine station operations the 
' .. ' .. ' .' .... '. '. '. . . .. . '.' . 

orbiter wil 'visit the station on a regular basis. 
"" . 

The typical 

visi t will include the foll.;wing 

a. Approach to station 

b. Station keep prior to berthing 

c. Berth to station 

d. Stay b~rthed to station for duration of visit 

e. Oeberth from station 

f. Separate from station in preparation for oeorbit 

g. Oeorbit 
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The activities during the visit will be highly 

variable, however, gener!callythey will involve the transfer ot 

a. Personnel 

b. payloads 

c. propellants/oxidizers/fluids/gases 

d. Consumables 

A successful berthing system will be adaptable to all 

possible ~rbiter-station interactions including !Jrovisions for 

resisting all berthing interface forces and moments. 

3.3.4.1 Orbiter Berthing with Baseline Docking Tunnel 

The baseline orbiter docking module is defined in 

MCR 554~. In that proposed concept, the docking mod~le is located 

at the forward end of the payload bay. The tunnel is attached to 

the hatch located in the crew cabin aft bulkhead. The docking 

interface is at 20515. The docking module support structure 

attaches to the longerons and the keel with standard pa:Y'load 

f,i t ti ng5. " ~i<J.ur:e .. 3,3:-9' .de.pi,cts. the. Qoak.i-ri'g'm<>dule cotlcept;· . . ...... .. . 

The docking system mechanism is similar in conce~t to 

Apollo Soyuz Test Project (ASTP) with active and passive docking 

units, where -active" refers to the docking unit with attenuata, 

supported standoff ring which engages and latches the other d.ock.i/19 

unit on initial contact. It is anticipated that in this concert 

the Orbiter docking module will be the active one and the S!Jace 

Station docking interfaces will be p~ssive. 
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The Orbiter docking module has thn following-

preliminary design requirements. 

a • Docking requirements 

Mission 
. 

Normal paylo'ad 'd~cking 

Orbiter/orbiter docking 

Orbiter/station docking 

b. Contact conditi~ns 

Parameter 

ReI. contact velocity (-Z)* 

Relative ang. vel. 

Relative lateral 
displacement 

(X,Y) 

(3 axes) 

(X, Y) 

Relative angular (pitch & roll) 
misalignment 

... ' 'Relati ve' rot'atio'naf '('yaw)' .. ' 
misalignment 

Weight 

65,000 lbs 

Orbiter weight 

Orbiter + payload 

.05 fps min 
0.5 f~s max 

weight 

o to + .1 f~s max 

+ 1.0 deg/sec abort 
any axes 

o + .5 ft. 

o + 5 deg about each 
axis 

, O· +' 7deg 

* Parameters in Orbiter coordinate system 
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The docking module concept for Orbiter-to-station 

berthing is achiev~ble, however, it h~s a drawback. Considerable 

payload bay volume must be sacrificed to accommodate the docking 

module •. ' The docking module '."culd have to fly on ever"y mission, . 

thus, the net effect would be the reduction of availabl~ p~yload 

bay length by approxim~tely 70-30 inches. 

The station concept described in this document has 

spare berthing ports available on all modulc5 exce~t on the 

logistics module. It is feasible to berth the Orbiter to any 

unoccupied berthing port. Figure 3.3-7 shows one option for 

orbiter berthing. The orientation of the Orbiter ~ith res~ect to 

the station would be a function of the particular task to be 

performed i.e •• , payload unloading, crew transfer, etc. 

The handling devices (cherry pickers) arc described in 

section 3.2. One concept involves a manned operators module that 

has a berthing port which enables. the handling device to serve &s a 
• .. " " ";, " ....................... -." ... .. ...... " .o... .... .. ............. .. 

means of berthing the Orbiter. One of the handling devices would 

berth with the Orbiter docking module, while the othe~ handling 

device would be utilized to remove or install payloads from the 

payload bay. Configur.3tion and operational details of the handling 

devices are described in detail in section 3.2. 

3.3.4.2 Alternate Orbiter Berthing Concepts 

The present configuration of the Orbiter limit~ 

the methods of berthing to that of the docking module conc~pt. 
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However, with modifications to the Orbiter it would ~~ ~o~si~le to 

develop alternate means of berthing to the S~ace Station. Whether 

the costs can be justified, is a function of the ruquireu payload 

bay length. If a potential customer would have a'payloadthat 

reyuired the full payload bay length for a high value cargo, then 

an extensive modification to the orbiter might be economically 

feasible. 

Alternate concepts have been di~cuHseu where the 

Orbiter would be attached to the station utiliziug specIal new 

de~ign fittings, or existing attac\lments such as forward and aLt ~T 

attachments. Generally, they all requirud Orbiter modifications; 

they were in high heat areas, thus, tile damage was likely from 

routine attachment operations; they were at ~oints that would be 

hard to reach from the trusses on the station. One concept is 

depicted in figure 3.3-8. It is expected that development of 

station mating equipment will be costly, however, program 

reyuirements may justify the reyuircd funding levels. 
, " 

. ..... 
.... ".o •• . . .. . , . , 

3.3.5 Attachment of Ancl1liary Equipment to Station 

3.3.5.1 Storaqe Tank Attachment 

The servicing of orv will involv~ the use of 

considerable amount of ancilli~ry equipment. it is expected that 

prolJellant and oxidizer tanks will b~ rather Idrge \-lith storage 

capacities in the 3D-8DK Ibs. range. This l!recludes their 

integration to the station as part of a module. Storage tanks of. 

this siZE: will haVE: to be mounted onto one of the Tetr<ltrus~e!:>. 
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" The large storage tanks will be trans~orted to the 

station in the Orbiter. Likely they will have a four-or five-point 

trunnion attachment configuiation for payload bay transport~ Thus, 

the attachment method that is planned for OTV would also be . 

feasible for the stor~ge tanks. The trunnion attachment with 

tri{Jod (see section 3.3.3.1) will be utilized for securing the 

storage tanks to the Tetratruss. Description of the tripod 

attachment scheme will not be rep~ated here since it is identical 

to the OTV at~achment. 
,,' " ' , , 

The OTV servicing function also includes th~ nt!ed for 

smaller tanks. Some of these are for gas storage, whereas, others 

for liquidS. Because of their size, these smaller tanks could be 

located anywhere on the station. However, there is requirement to 

minimize tubing and cable runs. Thus, it would be a decided 

advantage to locate all storage tanks in close proximity to one 

another., ·This·.would· result· .i,n. she!;"!;.!;!r tubing and cable. ,r.un~, and 

perhaps simplier umbilical connections. 

For this station concept the OTV servicing tank farm 

is located on the inside plane of one of the Tetratrusscs close to 

the apex. The tankfarm includes a deployable, nonthrusting boom 

for purge and vent operations. There is a cable and tubing tray 

run to the closest service module and one to the OTV service area. 
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3.3.5.2 Tubing and Cable Tray Attachment 

The tctratruss inside plane areas are the planned 

locations for the OTV servicing activities. The outside planes drc 

the locafions fo~ the solar arraY6, the radiator panels and the 

various communications and radar antennas. 

The various components that comprise the total 

function of the station will be interconnected by a number of 

electrical, data, and antenna cables and tUbing runs Lor multiple 
. . ~. 

fluids and gases. 

The tubing and cable runs have to be de~loyed, 

attached to the Tetratruss and interconnected to the various 

components before station operation may b~gin. 

The configuration selected for this Space Station 

'. . ..... ~oncept: ·is 'a' .fol-dout ·type ·cable/t.ubing. tray that is attached t~·. the 

tubular members of the Tetratruss. 'rhe cable trays are tran&ported 

to orbit in 40-feet sections. The sections contain all the 

required cables and tubing, and are hinged together at the ends. 

Flexible joints are provided for the tubing runs. Umbilicals are 

attached to the c~bletrays at the ends of tubing runs. The cable 

trays are transported to orbit in the folded configuration ana 

stowed in the Orbiter payload bay. The~ are deployed onorbiL wi~n 

the RMS and attached to the tetratrucs. The attachment intcrtac~ 

is described in section 3.3.2.2. After the installation of (,;.J;;l::" 
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trays and all mating components the umbilicals are deployed and 

mated. With subsequent purge, fill, and checkout activity the 

cable and tubing tray installation Is com~leted. 

3.3.6 Attachment of Satellites to Station 

The satellite servicing function for the Space Station 

will encompass the retrieval, store, servicing, and deployment of 

various satellites. The projected traffic model to year 2000 

includes a diverse variety of satellites. They range from 

communications satellites destined f~r GEO, to space telescopes, 
<--" ( ( <,:" 

LDEF • 

The satellites are expected to be uni~ue in spite of 

present efforts. underway to standardize satellite design •. Thus, 

the attachment and stowage pr0blem for satellites on the s~acc 

station is e~pected to be foroidable • 

. -.. . - .-, . 

fittings, and grapple fly-tures may be utilized for tile attachment 

of the satellites to the station. ThisCmethod however may not be 

feasible when the satellite has large appendages (such as solar 

panels, radiators). 
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In general, leo requirements between satellites and 

the Space StDtion ~ill have to bo developed on a case-by-case 

basis: Thus, attachment hard\~are for Space Station berthing will 

have to be developed simultaneously with the satellite. Because of 

the lack of requirements and definition, further consideration Is 

deferred. 

.. ' .... .o. ' •• 0 • • oO.o ••• .o .o' • .o.o.oO ..... 
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3.4.1 

'" 0 ( 

Module Design 

Introduction 

The basic modul~r clement of the Space Station is 

en~isioned ~O be a large c~lindrical pressure vessel that can be 

trans~orted to the orbiting station in the Shuttle cargo bay. A 

sketch of this concept is shown i~ figure 3.4.1. The cylindrical 

vessel will have end domes that contain docking ports and windows. 

It is also envisioned that this module will be designed so that it 

can serve as a universal shell and frame element that can be used 

efor multiple functions. This type of design will lead to.a mass 

production of modules from an assembly line and minimize the cost 

of a st- Jttle launched Space Station. The module function (crc\o/ 

4uarters, medical service, galley, laboratory, etc.) would define 

the interior support equipment. 

The study conducted in this section will present a 

universal module des.ign concept that can be transported in the 
• •• - ••• • ••.•••• eo' •••••• • eo •• 

Shuttle cargo bay. 

3.4.2 Module Design Requirements 

The following list specify generlll requirements that 

have been identified for th~ Space Station module. 

A. The module should have a ten year service life 

with a poss~ble refurbishment every three years. 
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B. Factors of ~afety 

1. Ultimate factor of safety = 2.0 for internal 

o , 

2. Ultimate factor of safety = 1.4 f6r iriertia 

loads. 

c. Module size to utilize maximum Shuttle cargo space 

without violating the Shuttle requirements. 

D. Provide a shirt sleeve environment at 14.7 psia. 

E. Provide adequate internal attachment structure for 

mtidule function configuration. 

F. Lightweight structural design. 

G. Module internal volume to remain ·clean" for 

maximum module function configuration. 

H. probability of no meteoroid penetration for ten 

years of .9. 

I. Provide structural capability for docking to other 

modules and to the Space Shuttle • .. .. .... . . -.. ... . .... 
. ... 

J. Provide vehicle viewing ports and umbilical 

~.cmels. 

The design service life of the Space Station will be 

ten years. The 2219 aluminum proposed for the module structure 

will have no problem meeting this criteria for suitained loads. 

The other parameters that will affect the life of the module will 

be fatigue stress cycling because of thermal and internal pressure 

changes and onorbit external loads. It is expected that these 

effects will ,be negligible for the module service life. 
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The maximum module size that will fit into the Orbiter 

payload bay without infringing on the Orbiter's clearance envelope 

is shown in, figure '3.4.2.' The module size sho ... m is 14 ,feet in_ , 

diameter and 49.917 feet long. However, because of ~ossible 

deployment problems with this module, it was decided to roduce the 

module length for this study to 46 feet. 

A shirt sleeve environment for the module will require 

thermal conditioning and a 14.7 psia atmosphere. The thermal 

,conditioning will require the~~al insulation and radiators. 

The module structure will have to provide attachments for the 

insulation. The ~xpandable truss structure will provide support 

for the radiators. 

It is envisioned that the ruodule ring fr~mes will 

provide ample attachment area for the internal configuration of 

the module. Since the module CG limits, as dictated by the Gpace 
.' ',' ., • eo •• '.0 •••• ' ';'" • '. "0 • • • • •• , " ••• 

Shuttle Syste~ payload Accommodations, reference 1, indicates that 

the Z-CG will lie below the centerline of the module, it is 

anticipated that the larger mass items will be located beneath the 

module floor on pallets attached to the ring f.ame flanges. The 

configuration above the floor is anticipated to be a "peg board P 

type structure attached to the ring frame flanges that will allow 

any combination of equipment mounting and compartment bulkhead 

installations. Details of the different internal configurations 

required for an operational S~ace Station have not been defined. 
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, ! ., .. ~ The universal module primary load carrying structure. 

must be as light as possible to allo~ for growth in the equipment 

~~I. c' ~ ,required; for any-module,function that may be req~ircd. This 

reyui.res a hig~l-strength-to-weight material that can be ea3ily and 

economically formed into the structural shapes needed for the 
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design. Section 3.4.6 Is devoted to this requirement and gooS 

into considerable detail involving cost and manufacture. A module 

weight of 40,000 pounds was u~ed for the sizing and weight 

analysis in this feasibility study; however, the module does not 

need to be restricted to this weight. 

To have n module that will serve any given function 

efficiently, the primary load carrying structure should be clear 

of the interior 'space, giving abundant work or storage area. In 

this study, the primary load carrying structure is considered' to 

be an integrally stiffened skin with ring frames. The skin will 

resist the ~ressure loads and also be stiffened by stringers 
'. -... '.. ... . " -.. '. -. . . . . .. . '.' . 

equally spaced along the outer circumference to resist body 

bending and aKial loads from the Shuttle flight environment. The 

placement of the stringers on the outer surfuce of the skin will 

not only produce a ·clean" internal volume, but will also produce 

a more efficient section to preclude general instability of the 

module from the large axial forces during ascent. The ring frame,;; 

will be located in the interior of the module and serve a doubl~ 

purpose to reduce the overall column length of the module for 

buckling considerations, and also to provide attachment locdticll:> 

for internal cqui~ment and bulkhead partitions. In general, the 
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ring frames are ~sually heavier than required for buckling 

considerations; therefore, the additional material they possess 

can be used for the attachments. 
{. c', 

Design of a manned modular element for the space 

environment should certainly include protection for meteoroid and 

debris impact. The ex~osed surface area and ten year service life 

will require a certain" amount of protection for th~ cr~w and 

equipment even with the anticipated low earth orbit of the Space 

Station. The npproach used for this study includes a meteoroid 

shield that will be separated from the module pressure skin by 

nonheat conducting standoffs attached to the longeron. Therefore, 

the shield and pressure skin will form the meteoroid barrier. 

Because of the lack of a defini tion of tt.e probabili ty of h.avi ng a 

penetration, it has been assumed for this study that there ~ill be 

a 90Q probability of no penetrations for the ten-year service life 

of the module. 

.. " .. .... ~ .. .. .. .. "" .'" ..... " ." .. -." 

Versatility of the module will require that docking 

ports be provided for mating to other modules as well as the 

Shuttle. To provide entrar.ce and egress at two locations in the 

module, two docking ports will be provided, one at each end at the 

module dome apex. This would also be an ideal location fo~ 

viewing ports. 
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3.4.3 Module Configuration 

Tho configuration baseline chosen for this study is 

,shown in Pi9ure 3.4.3 and is'lln all welded 'alumin'um,: integrally 

stiffened cylinder with double curvature domes. The inside radius 

of the module was reduced to 00 inches to allow an additional 

4 inches for the meteoroid shield. From a study presented in a 

later section, the baseline double curvatu~e end closure was 

chosen to be the Cassinian dome which will be ~hown to havo 

several advantages over the other dome shapes. A eO-inch diameter 

docking hatch has been inclUded at each dome apex which will 

provide a GO-inch wide passageway for cargo and equipment. Each 

hatch has also been equipped with a c~ntrally located window. 

3.4.3.1 Module Skin Thickness - The thickness required in the ---- , 

cylindrlc~1 portion, using 2219 aluminum to resist the internal 

pressure of 29.4 psi (ultimate) is .0392-inch. The basic 

'. ,":'.; t:~.iC:k,n~~~ ,;-,e.9u,1 ~ed, 40. tpe, Cfl,sp'in!an .dorn~, prea is .• 032-inch (see .', 

re~cr~nce 2; m = .19, " = 1.67, r = 0, a = 80 inches, Ftu = 60,000 

psi). Theoretically, the Cassinian dome under consideration will 

experience no discontinuity stresses at the dome/cylinder 

interface if the thicknessec of each arc equal. A basic thickness 

of .040-inch is recommended to resist the internal pressure; 

however, thickness of .060-inch will be required to meet the 

meteoroid protection criteria. 
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Ring and Longitudinal Stiffener Design- Ring and 

stiffener spacings for the modular element were selected to 

provide adequate, attachment ~o~nts for meteoroid
c 
shielding, 

equipment, floors, ground handling, etc. This selection resulted 

in nine rings spaced equidistant along the cylindrical portion of 

the module and 162 longitudinal stiffeners spaced e~uidistant 

around the circumference and running the e~tire length of the 

cylindrical portion of the module. Strength and buckling 

requirements were adequately satisfied in this functional design. 

This arrangement provides a light stiffened structure and also 

provides a versatile basic structure if design changes should be 

necessary. 

The module rings were designed primarily to provide· 

for attachment of internal equipment, and for handling and 

mounting of the module in the Shuttle payload bay. The 

cross section is ~ore than adequate to carry the launch and flight 

. i~~d~: " ~y'pi~'~i cro~'~ "~~ctio'~~ '~r~' ~h~W~' in . figure 3 ~4 .4' •.. Th~'" 
dimensions for the longitudinal stiffeners were chosen to 

facilitate attachment for the meteoroid shielding and also to 

provide adequate stiffness to prevent buckling of the skin. a 

typical crc'ss section is shown in figure 3.4.5. 

High density mass of unidentified subsystems may caus~ 

some minor perturbation in local reinforcement of the ring frames, 

but it is expected that this structural weight perturbation w~l~ 
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be minimal. Floors and partitions will carry the loads due to 

crew ~nd mounted equipment, but the basic design must remain 

·cleanw in order to-aff~rd the maximum possible configurati~n 

fledbi.1.1 ty. 

3.4.3.2 End Closure Design - The Cassinian dome, chosen as the 

baseline end closure for this study, has an internal radius of 

80 inches and an internal rise of 53.978 inches. The Casslnlan 

curve may be used to design a ~ide range of shapes with a minimum 

of discontinuity stresses. Hemispherical and ellipsoidal domes 

are special cases of the Cassinian dome. The meridional curve of 

a Cassinian dome contains two parameters that permit much 

fleYoibility in meeting design conditions. The parameters m and n 

were selected to y(eld a minimum rise under the condition of all 

tensile membrane stresses during internal pressure loading 

(m = 0.19 and n = 1.167 -- sec reference 2). The Cassinian dome 

end closure has the highe~t strength-to-weight ratio under 
••••••••• _ ' •••••• _, ._ •• 0.' •••••• .' • • • • '. '" • 

pressure loading them any of the other configurations considered 

in this study • 

A 60-inch diameter hatch is centrally located in each 

end closure as shown in figure 3.4.6. The hatch opening is 

bounded by a toru5 to provide a minimum di5tortion seal ~urface. 

The door of the end closure is mounted on parallel rails for 

zliding operations so as to minimize the encroachment into the 
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element functional area. The door has a centrally located window. 

A sandwich-type, lens-shaped door was considered •. A.membrana-type .~ 
c ..• , ~ c ~ ,. ;: ~ 

. , ., 

". 
llyhtweight door has been conceived as an alternate design. 

Fo~r struts connect the torus area at the door seal to 

fittings in the cylindrical section of the modular element. The 

struts are located so that the door slides along the wall between 

two of the struts. The four struts are not required for strength 

under pressure loading. As presently conceived, the inertial 

. loading due to docking will require the strut configuration. " 

The struts do not seriously infringe upon the clean 

volume concept. However, an alternate design to accommod~te the 

inertial loads was formulated. The alternate load path was 

provided by a "bird cageD structure exterior to the Cassini dome 

closure. This concept weighs over 400 pounds in comparison to 160 

. ' , .. ; po,und,s ·f,or, the, recommen'ded, fou·r-strut' des ign • 
0, •• 

3.4.3.3 i·/eld Joint Design - A weld land of 0.12 inch, or n2t," 

was used at the dome/cylinder circumferential intersection. This 

welded joint was analyzed in det~il for stresses in ~he weld area 

because of pressure loading. Since the module is so large, it is 

doubtful that the joint can be conditioned after welding and would 

lead to a possible weak area with respect to strength and life 

integrity. Additional stresses in the weld because of mismatch 

and sinkage discontinuities, were calculated to establish 

manufacturing tolerances. 
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3.4.3.4 Supportinq Analysis Reference 3 is a computer 

analysis of a Casuininn dome Space Station module very"similar to 

the design considered for this study. Of particular interest is 

the analysis of a torus/cassini dome area surrounding a docking 

hatch. This analysis not only confirmed a design which did not 

require the struts for pressure loading qf the shell but also 

confirmed that the torus and shell combination Possp.sses 

sufficient torsional and bending stiffness to minimize the 

distortion of both the inner and outer sealing surfaces of the 

". docking inter-face. ~', 0.,; ... 

Loads at the docking interface will require four 

struts to transfer the load to a ring frame in the cylinder of the 

module. The monocoque shell structure of the dome will not 

provide the needed load path without buckling even though it is 

assumed to be pressure stabilized. The following analysis was 

.. ' requi red· f.or. . the S:txll·t ,'S i ~ing .. in ,''''P i cl}. i t;. ~a~ . a~s~m~Q . t.h?t . ~w9.~; 

the four struts carryall the load. 

Strut Sizing - The ultimate load factor is assum~d to 

be 1.0g. From Figure 3.4.7 the reaction couple for is 

(40000)(1.0)(276) = 
60 184000# 

The maximum tension and compression load in the slr:~ ~ 

p = (184000)(63.3) = 230638# 
x 50. S 
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Choosing an aluminum labe 20l4-T6 ~~ 6" 00 x l/4~ wall 
thickness "-~ !, _ p • 

. A = 4.712 in2 

The ultimate tension and compression stress in the tube 
is 

cr = 230638 = 49000 psi 
4.712 

The buckling allowable from Figure 3.4.8 for 

LIt) 0: 63.8 = 30 
J 2.121 

is 

~ 49000 psi 

The weight of each tube is approximately 30 pounds. An 

additional 10 pounds should be added to each tube for end 

fi ttings. 

.. ', .. , -........ .. . . . .. . '. . .. . . . '., . 
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3.4.4 Meteoroid Protection 

, . 
I • ... • 

The Space Station requirement established in this 

study for meteoroid protection reliability, states that the. 

station will have a 900 probability of no penetrations for 
" ,. 

- .;,' 

10 years. U~in~ ~h~ criteria of references 4 and S, it can be' 

seen that a single module skin thicknes~ required to meet this 

requirement is over l-inch thick. Therefore, it is recommended 

that the meteoroid protection system use the meteoroid bumper 

concept. This concept requires that an outer shield be placed 

around the module (usually aluminum) that will act as a meteoroid 

bumper. The' purp~se of 'the" bump~, is to· slow down the meteoroid 

as well a5 break it into smaller pieces. Experiments using 

hypervelocity impact projectiles and aluminum targets have 

optimized the bumper thickness and spacing between th~ bumper and 

the pressurized shell structure that will cause the meteoroid and 

the impacted metal to vaporize resulting in a gaseous impact 

loading on the pressurized shell structure • 
-.. ,. .. ~ ~ . . . ' . . ,. ... " .,. . '.,.-- " ... 

Using the meteoroid shield concept, the shield 

thickness required to meet the design requirement of 90% 

probability of no meteoroid penetration for 10 years is .037 

inches. The required pressare shell thickness to withstand this 

impact without having a penetration is .080 inches for a spacing. 

of two inches between the shield and the pressure shell, or 

.057 inches for a 4-inch spacing. 
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Because of the modular concept, a punctured module 

could be shut off from the rest of the station and could be 

repaired or replaced •. Because of the replacement ~apability of 

the module concept, p~rhap~ a probability of 90\ of ~~t havi~ia 

penetration for three years would be a more reasonable goaL For 

this requirement, the shield thickness becomes .027 inches thick 

and the pressure hull would be .040 inches thick at the 4-inch 

spacing which happens to be the same internal pressure requirement 

plus a 25\\ increase for impact damage. However, in keelJing \'1i th 

the original design requirement, it is recommended that the outer 
'c. • 

shield thickneSs be .040 inches and the pressure shell thickness 

be .060 inches with a 4-inch spacing between the shield and the 

pressure shield. 

3.4.5 f.todule Weight 

The primary structural weight has been calculated for 

the modular element in its ·clean- ccndition; i.e., less floors, 

'pai:'"t'it:ionsi 'dacR1"Ilg' mechanisms',' etc'.' ,Some· o.f ,the,omitted,'{-tems 

are included in secondary structure and the remaining items are 

listed as subsyntems. A total launch weight of 40,000 pounds was 

assumed. The basic skin thickness was .060 inch. The weight was 

accurately culculated, but Some minor perturbation will occur from 

the detailed analysis of the structure • 

.--
" 
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The distribution of weight in a basic modular clement 

with Cassinian dome end closures and a basic skin thickness of 

.060 inch is as .follows. .' 

A. cylindrical Sidewall Assembly 4191 

B. Dome Assembly l516 

C. Total Primary Structure 

D. Secondary Structure (10% of Subsystems) 

E. Subsystems 
Meteoroid Protection 
Seals 
Thermal Insulation 
Remai~in~ Subsystems 

952 
64 

373 
29,786 

5707 

3118 

,_ 31,175 

Total Launch Weight 40,000 lbs. 

The cylindric~l section weigllt breakdown is as follows 

A. Skin (t = .06) 

B. Rings (9) 

C. Longerons (162) 

D. f.1ounts 

E •. Wel~ Lands .. " . . . . 

1315 

G96 

1907 

35 

238 .' . . . ' . ...... " .. 
4191 pounds 

The breakdown of the weight in the Cassinian·dome ~nd 

closuro is represented in line 1 table 3.4.1. The skin gage ~as 

assumed as .060 inch (meteoroid requirement) and not the .032 inch 
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TABLE 3 .. 4.1 . END CLOSURE WEIGHT COMPARIS~N ". 

FUR A 14~FOOT DIAMETER CYLINDRICAL 
, TANK UNDER 29.4 PSI PRESSURE , .. 

• ," 

-
GEOi'.ETRIC 

COM P 0 N E N T S - TOTAL 
SHAPE Docking Core or Weld and 

Cylinder Torus , Collar Door Seams, Skin, Weld 
'l..-...s 

.- Rings, etc lands 

I 
'. 

C~ SS i'i1 ian 
. 

Do:ne . --. 
128 60 34 183 160 156 37 758 

E1ljP~ Dome 12B 60 34 183 160 156 " 37 758 
" 

, , 

~ 

Conic Dome 128 60 34 183 215 230 37 887 " 

. 
• 

Sjiherical .. 
: 

Dome 128 60 i 34 183 . 160 202 37 804 
" . 

n-
Flat j .. 
Scnd.'/ich 141 -- 60 183 ,540 192 50 1166 . -. . 
Flat I 
8earn/Skin! 188 50 34 

. 183 545 10) 47 1160 : i " 
Stringer 

. .,- ~ .. ----'''' 
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required for pressure loading. The wei9hts shown are based on 

detailed computer analysis of thernodular element under pressure 

loading. The inertial loading from a docking enviro~ment has been 

considered for the strut analysis in a Qslide rule" calculation. 

Thorough analysis of the module structure in an artificial 

g-environment is pending • 

A com~arison of the weights of primary structure 

required for various types of cylinder end closures is given in 

table 3.4.1. The weights were obtained frem a cursory design and 

analysis study and are not necessarily optihlum structure. The 

Cassinian, elliptiC, and spherical domes are essentidll~ equal in 

weight, but the Cassinian dome has the lowest discontinuity 

stresses. 

3.4.6 Manfacturing Surnmarr 

3~4.6.1 Materials Selection - Aluminum alloys were 
.. . . ... .... : .... 

. selected· as··die ·lJ·riincld' struc·t·uriif matedilis . for the Space Station 

module. The rationale for selection was based on the low cost, 

lightweight, and fabrication ease of aluminum as compared to othe~ 

candidate structural materials. Two specific alloys, types 2219 

and 6061, were incorporated because of their good weldability and 

their successful ap~lication on previous manned 5pacefli~ht 

programs. Past experience with these t~o aluminum alloys has 

established ~roven fabrication techni~ues and procedures which 

should provide flight hardware at a minimum development cost. 
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3.4.6.2 Fabrication Considerations - The fabrication 

of the Space Station module presents several problems because of 

its relatively large size (avproximately 14-feet diamefer and 46 

feet long). The module is basically a cyclindrical str'Jcture 

capped nt each end by some type of structural closure. 

The fabrication of the cylindrical portion of the 

module can be accomplished, using existing manufacturing 

technology. 0ne ~rocedure for fabr icatinq the cylindr ical portion 
, .:. ' ~ . ,,: 

could be as follows 

A. Use 2- thick, 60" wide, flat plate stock, 22!9-T351 

~luminum alloy to make cylindrical segments. 

B. Rough machine plates to form integral longitudinal 

stringcr~. 

C. Roll or stretch form rough machined ~late~ to 

proper contour (14 feet diameter) • 

"""" " : " " "" '""0:"" Fr~ish" \nac"h"!rte "tu!;illg "chemical milling) to final· 

membrane thickness and weld land configuration, allowing for 

future dimensional changes "in processing. 

E. Age cylindrical segments to T8S1 heat treat 

condition. 

F. Assemble the cylindrical portion of module by 

welding all segments together. 
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The fabrication of the end closures for the module 

'. . ~ 

requires somewhat different manufacturing techniques, depending on 
(" G "_ '- - • 

,0,( 

the geometric shape of the closure. In this st~dy, six types of 

end closures were 'investigated: Cassinian dome, elliptic dome,' 

spherical dome, conic dome, flat bulkhead (beam/skin/stringer 

constuction), and flat bulkhead (sandwich construction). The 

Cassinian dome was selected as the baseline design end closure for 

comparison with other type closures. Fabrication considerations 

for the end closures are included in the following sections. 
'- '': 

3.4.6.3 Cassinian, Elliptic, and ~Jherical Dom~ 
Fabrlcutlon - The fabrICation techniques for 

the Cassinian, elliptic, and s~herical dome end closures are 

similar. The design of these closures does not require integral 

stringers or similar reinforcement; therefore, relatively thin 

sheet stock (approximately l/OR thick) can be used in their 

construction. Ideally, these domes should be fabricated from a 
• -0 •• '._ " '. • • - •• '. '0 . • • • •• 

'0' • 

single sheet of 22l9-T851 aluminum alloy; however, the maximum 

capacity of existing aluminum sheet rolling mills restricts the 

final sheet size to approximately 10 feet wide. Twenty-foot-wide 

sheet stock would be required to fabricate each dome from a single 

sheet. The limitution on sheet stock width necessitates welding 

an assembly of pie-shaped dome segments. Two or more segments can 

be used in ass~mb1y, but only two segments would be per[erred to 

minimize the welding requirements. 
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The fabrication of each dome could be done using the 

following procedures 

A. Use lieN thick, 120· ,wide, flat sheet stock, 

. 2219-T351 aluminum alloy to make dome segments. 

B. Trim and roll segments to the approximate flat . 
contour required. 

c. Form (using explosive or hydroelastic press-forming 

techniques) to the exact dome contour dimensions. 

D. Finish machine (using chemical milling) to final 

membrane thickness and weld land configu~ation, allowing for 

" future dimensional changes in processing. 

E. Age dome segments to TeS1 heat treat condition. 

F. Assemble the module dome by welding the segments 

together. 

Other methods for fabricating a one-piece of unitized 

dome closure were investigated, included were shear forming, 

, ' " ',' " sPi'rll'li hg," ana 'e'~p'lbS i ve 'for'mlncj" ' bf t.hese 'thre', :nettiorls; . oni'y' 
shear for~ing appears to be feasible because of li~itations in the 

mximum width of available sheet stock. Shear for~ing may be us~d 

because the thicker plate material is thinned during forming, 

resulting in a larger diameter finisheci product. The ~roblem of 

heat treating a 14-foot diameter dome to acceptable strength 

levels after shear forming requires further study. 
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3.4.6.4 Conic and Flat Bulkhead Dome Fabrications -

'The conic and flat bul~head dome fnbrication is more complex 

because' the design requi res intl~gral stiffeners to carry the 

loads. The details of the design have not been established, but 

previous fabrication experience can be incorporated to manufacture 

these domes with essentially no development work required. 

The,conic and flat bulkhead (beam/skin/stringer 

construction) can be fabricated using techniques similar to those 

used in the cylindrical portion of the basic modular element. The 

Martin-Marietta Corporation incorporated a flat bulkhead design 

(beam/sldH/stringer) in the IS-foot diameter Subsystem Test Bed 

vehicle that was delivered to JSC in 1971. 

The flat bulkhe~d (sandwich construction) was also 

considered in this study, primarily to obtain a fabrication cost 

..... comparison with the.othe.( domc;:;. Jt,s .f,abrication can be 
• 4 ... " ......... '." I' .. • ... • ........ • . • . . . " .. ' . 

acco~pllshed with p,roven skin and honeycomb construction 

techniques used on previous manned spaceflight vehicles. 

3.4.6.5 Fabrication Cost Comparison - The relative 

costs of six types of end closures were co~pared. The Cassinian 

dome was selected as the baseline cost reference. A breakdown 01 

comparative costs is pr~sentcd in figure 3.4.9. This cost 

comparison includes factors related to fabrication of the end 
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closures only. The cylindrical portion of the module was assumed 

to be the same for each dome s~ape, a~~hough longcr.cylinders will 
. ~. ( " '. 

be required for the two flat bulkhead designs to maintain a 

constant module overall length. 

The primary factors evaluated in developing relative 

costs of th~ various domes included fabrication techniques and 

complexity, materials availability and costs, design weight, and 

previous costing experience. Perhaps th~ most significant cost 

factor was design weight because weight is indirectly related to 

the load-carrying cfficiency of ~he dome structure. As a result, 

the Cassinian dome proved to the least costly of the six domes 

evaluated. The gra~ual transition of the cylindrical portion of 

the module to the Cassinian dome closure minimizes structural 

discontinuities which require heavy reinforcement of the 

load-carrying members with a resulting incre~se in weight. 

.. .. .. .. .. ..... .... .. .... " ....... .. ........ .. .... .. ~.. . .. 

3.4.6.6 Fabrication Summary and Recommendations - The 

possible manufacturing procedures for fabricating the cylindrica~ 

portion and the various end closures for the Space Station module 

were reviewed and evaluated. For least cost, the curved dome end 

bulkheads (Cassinian, elliptic, and spherical) were favored 

because of a more efficient load-carrying design. The fabrication 

of the curved domes was limited, however, to segmented and welded 

assemblies because of present aluminum alloy sheet width rolling 

mill catJacities. 
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The following additional tasks are recommended to 

investigat~ other areas, not.included in the present desig~,.for 

turther reduction of fabrication costs 

A. Explosive forming or spinning of unitized domes~ 

using welded sheet stock. 

B. Shear forming of u'nitized domes, using thick plate 

stock. 

c. Assembly of external or internal structural 

stringers and rings, using adhesive systems and/or mechanical 

fasteners. 

D. Evaluation of other candidate alloys in morc 

detail, such as nonhcat treatable aluminum alloys and maraging 

alloy steels for the structural shell. 

3.4.7 Tunnels 

The component of the Space Station which permits 

·.a ..crew- member' tc 'g()' 'fr-oltl'one, mbdu-le' to ·anothermodule· (across' the 

truss) are the three tunnels. The tunnels also satisfy the 

requirement for a dual esc~pe from the modules in case of fire, 

and other emergencics. 

"_Each tunnel is .constructed of three telescoping 

sections that are .03 inches thick, four feet in diumeter, with 

two internal layers of flexible but relatively inextensible 
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membrane for containing the pressure (see figure 3.4.10). The 

colla~sed tunnels are stowed for launch in the void existing down 

~he center of the ruodules. A system of pretensioned cables will 

react, the axial load caused by internal pressure, thus, elimi-

nating additional load on the modules. 

Alternate Concept to the Tunnels 

One alternate concept that was considered in place of 

the three tunnels is the cable car concept. Each tunnel is 

replaced with a ~ai~ of cylindrical capsules having docking por~s 

on each end, dra',:- by cables, mounted on opposi te sides of a 

taut cable system (see figure 3.4.11). Each habitable module will 

have two docking ports and a cable driven system instead of a 

tunnel interface. 

'.' ... , ' . • •• 0" •• , , , ", <II • 
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3.4.8 Conclusions ~ Recommendations 

This section has proser-ted analysis and rationalo 

to establish tho fCbsi~lli~y for tho design and manufacture,of a . 

Shuttle launched space Station module. The results of this study 

have determined one specific size and shape of module which may 

change as the Space Station configuration becomes more defined. 

However, this study was conducted to verify tho feasibility of 

manufacturing a universal size module. As the Shuttle load 

carrying capability becomes better defined, it is recommended that a 

more detailed and rigorous mo~ulQ study be performed. It is also 

recommended that additional thought b~ gi~en to the ~eteoroid 

penetration and debris requirement. 

The Cassinian dome end closure concept is recommended for 

the baseline 'design for the following reasons 

A. The sha~e of the dome will add a few more inches to 

the cylinder length resulting in a larger internal volume • 

. . , , .. " ", ", 'B~ , ,The' d'i'Scentinui,t"y' 'Eit'ressesat th'e, junctllr'E!' b'f' the 

dome and cylinder are less than other dome shapes. 

C. The Cassininn hns the highest strength-to-weight 

ratio than other domes. 

D. Least costly to ~anufacture. 
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It was found that all end closures examined in this 

study would require additional stiffening to withstand external 

: "docking loads.- The concept chosen for the baseline was tho ~dditlon 

of four tubular struts to transfer these loads from the docking ring 
• 

directly to the cylinder ring frame. The arrangement of these struts 

was situated so that they would not interfere with head space or 

hatch opening and closing; however, these struts could be removed in 

orbit and stowed if necessary. 

, " .. . .... ' . ... , " . ..... .. ' . 
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4.0 . Buildup Sequence 

i ' 

•.. ~" 
,~ 

The order of the Space St~tion buildup sequence is 

important to minimize the number of Orbiter flights and the EV,\ 

requirements. In addition, it is desirable to have a Space . 
Station that can be inhabited as early in the buildup as possible. 

The objective of this section is to define a tentative buildup 

sequence with the above constraints. B~sed on this study, a total 

of eight Orbiter flights is required for a fully operational 

station but it can be inhabited after the second flight. The 

buildup will be in the following sequence 

Delivery Flight No. I 

The Orbiter arrives at the Space Station orbital 

location with the following hardware in the cargo bay 

A) Three ~epl,oYDble trusses 

B) Solar cells 

C) Radiators 

D), Control moment gyros (CMG) 
, . ..... - .- ....... ' .......... '" .... . . .' ...... " . '. ; .. ' 

The three deployable trusses are removed from the 

payload bay, joined together at the three apexes and deployed to 

full size. Prefcrrably, the three trusses could be joined prior 

to launch, removed from the Orbiter payload bay, and deployed a~ a 

sIngle unit. 

" . 
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The solar cells are deployed next. EVA will probably 

be required for final solar cell connections to the truss. The 

radiators are also doployed and connectod to the outside ~f 

another panel. See figure 4.1 for the Space Station configuL~tion 

after this first flight. 

Following the above sequence the solar cells can be 

checked out and truss joints inspected prior to Orbiter return. 

One advantage to the above plan deployment of the three 

trusses, solar cells, and radiators is that complete checkout can 

be accomplished prior to any modules being brought to orbit. 

Module delivery and connection to the trusses is e~pected to be 

less difficult than truss erection. 

Delivery Flight No. 2 

Flight No. 2 begins the module flights, the first of 
.. ..... • - ..... 0 •• .o .o.... .o.o._ ... .o .. .o.... . .. .o • e" 

'which is a combination service module - habitat module. This 

first module can house the first crew in a part of the module. 

The SM/HM could function as a "mini" Space Station until further 

buildup. 

Deployment of the SM/HM from the payload bay is 

accomplished with the (RMS). The triangular truss is held by the 

handling and positioning aid (HPA). The SM/HM is then connected 

to the truss by using the Orbiter RMS to position this module. into 

place as shown in figure 4.2. 
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Fig. 4.2. The Positioning of a Typical Module into Place. 
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The trUSG to module joints are then locked by EVA 

crewmen. The solar cells are connected to the module electrical 

system, The EeLS system is connected and the Space Station Is 

then functional on a small scale. See figure 4.3. 

Delivery Fliqht No.1 

Orbiter flight No.3 will bring a logistics module to, 

orbit. The station will be held in position by the HPA and the 

logistics module will be removed from the payload bay by the RMS 

and attached to the' truss'joints by the same method used with the 

SM/HM. 'The logistics module will be berthed to the end of the 

SM/HM to complete a two module side of the triangle as shown in 

figure 4.4. 

Delivery £llqht No. 4 

Flight Nc. 4 may be the optimum time to bring the 

.,'.' ,'.,,', ,":- ma'nipulators"t'O,the 'stat"i-or1 'a,s 'shown'in 'flgure 3.2-14.' 60th tan' " 

be carried in the payload bay, off-loaded and attached by the RMS 
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and EVA crewmen. These monip~laiors will be attached to the edge 

of the tetratruss as shown in figure 4.5. 
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Delivery Flights ~/~,l, and ~ 

The next four flights are to be used to complete the 

six module Space Station as shown in figure 4.6. After the~e 

modules are positioned and fastened into place, the three 

connecting tunnels are installed into place as shol,fl in 'Figure 
. 

4.7. Buildup can be on an as-needed schedule (i.e., all 6 modules 

are not required fo: the Space Stati6n to· be completely 

functional). Figure 4.8 shows the Space Station fully completed 

and operational. 

Hydrazine tanks, antennas, Res thrusters, and other 

eyuipment, will be taken into orbit as needed on module flight~ 

and assembled by EVA crewmen. Many of these items can be brought 

to orbit inside the modules, removed and relocated later. 

-..... -
The logistics module is used for the storage.o~ 

• •• • •• • •• w •••• 

.... 
consumables, spare parts and equipmenc, and the stowage of waste 

products for return from orbit. Because not all of the 

consumables or spares will bp ~sed between each supply or cr~w 

rotation period, it would seem more practical to lcavi the 

logistics module in place and have smaller containers of 

consumables to take to orbit and smaller containerG of garbage 

and other wastes to be returned to earth. 



Delivery Flights No.5 thru No.8 
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5.0 CONCLUDING REMARKS C '. 

The results of a 3-month preliminary design and analysis effort 

has been presented in this report. The configuration that emerged 

consists of a very stiff deployable truss structure with an overall 

triangular cross section having unlver~al fuodules attached,at the, 

apexes. Sufficient analysis has been performed to show feasi­

bility of the configuration. 

This study emphasized an evaluation of the, structure required to ' 
c 

accomplish the Space Station objectives. Desirable attributes of 

this configuration are 

a) Th~ solar cells, radiators, and antennas will be mounted to 

stiff structure to minimize control problems during orbit maintenance 

and correction, docking, and attitude control. 

b) Large flat areas are available for mounting and servicing of 

equipment (OTV's, storage contain~rs, large antennas, etc.). 

" " ". /::, , " ."':' .' '" ' c~ . ,uar·ge- 'rna-55"i terns' Ce1'n" ·be. m~t..irit·ed· neqr the cellte'r of -gia'vl ty, 
.. /-.... 

of the system to minimize gravity gradient torques (and resultin~ 

::ontrol required), or can be rel'ocated to help stabilize the system by 

l.:lSU redistribution. 
,... (' l ' ... ,'L. 

d) The trusses are lightweight structures and can be trans-

ported into 6rbit in one Shuttle flight. 

" .,." I '" oj , 
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e) The trusses are expandable and will require a minimum of EVA 

for initial Space Station buildup. 

f) The modules are anticipated to be structurally identical 

except for internal equipment to minimize cost. 

, .. 

It is hoped that the work accomplished during this study will 

have a impact on future Space Station configurations • 

-.. - ... ' .. . '. . " . . .. .... 
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